Abstract
Abstract
Background
As insecticide-treated nets (ITNs) wear out and are disposed, some household members are prioritized to use remaining ITNs. This study assessed how nets are allocated within households to individuals of different age categories as ITNs are lost or damaged and as new ITNs are obtained. The study also explored how ITN allocation affects ITN durability.
Methods
A cross-sectional household survey and ITN durability study was conducted among 2,875 households across Tanzania to determine the proportion of nets that remain protective (serviceable) 22 months after net distribution aiming for universal coverage. Allocation of study nets within houses, and re-allocation of ITNs when new universal replacement campaign (URC) nets arrived in study households in Musoma District, was also assessed.
Results
Some 57.0% (95% CI 53.9–60.1%) of households had sufficient ITNs for every household member, while 84.4% (95% CI 82.4–86.4%) of the population had access to an ITN within their household (assuming 1 net covers every 2 members). In households with sufficient nets, 77.5% of members slept under ITNs. In households without sufficient nets, pregnant women (54.6%), children < 5 years (45.8%) and adults (42.1%) were prioritized, with fewer school-age children 5–14 years (35.9%), youths 15–24 years (28.1%) and seniors > 65 years (32.6%) sleeping under ITNs. Crowding ($$\ge$$
≥
3 people sleeping under nets) was twice as common among people residing in houses without sufficient nets for all age groups, apart from children < 5. Nets were less likely to be serviceable if: $$\ge$$
≥
3 people slept under them (OR 0.50 (95% CI 0.40–0.63)), or if nets were used by school-age children (OR 0.72 (95% CI 0.56–0.93)), or if the net product was Olyset®. One month after the URC, only 23.6% (95% CI 16.7–30.6%) of the population had access to a URC ITN in Musoma district. Householders in Musoma district continued the use of old ITNs even with the arrival of new URC nets.
Conclusion
Users determined the useful life of ITNs and prioritized pregnant women and children < 5 to serviceable ITNs. When household net access declines, users adjust by crowding under remaining nets, which further reduces ITN lifespan. School-age children that commonly harbour gametocytes that mediate malaria transmission are compelled to sleep under unserviceable nets, crowd under nets or remain uncovered. However, they were accommodated by the arrival of new nets. More frequent ITN delivery through the school net programme in combination with mass distribution campaigns is essential to maximize ITN effectiveness.
Funder
Research Council of Norway
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference62 articles.
1. Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
2. Renggli S, Mandike R, Kramer K, Patrick F, Brown N, McElroy PD, et al. Design, implementaion and evaluation of a national campaign to deliver 18 million free long-lasting insecticidal nets to uncovered sleeping spaces in Tanzania. Malar J. 2013;12:85.
3. SwissTPH/NETCELL Project, Tanzania National Malaria Control Program. Mass Distribution of Long Lasting Insecticide Treated Nets: Tanzania 2015/2016. In: SwissTPH/Netcell Project, Tanzania National Malaria Control Programme, Dar-es-Salaam: 2017.
4. Bonner K, Mwita A, McElroy PD, Omari S, Mzava A, Lengeler C, et al. Design, implementation and evaluation of a national campaign to distribute nine million free LLINs to children under five years of age in Tanzania. Malar J. 2011;10:73.
5. Lalji S, Ngondi JM, Thawer NG, Tembo A, Mandike R, Mohamed A, et al. School distribution as keep-up strategy to maintain universal coverage of long-lasting insecticidal nets: implementation and results of a program in Southern Tanzania. Glob Health Sci Pract. 2016;4:251–63.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献