Abstract
Abstract
Background
Seasonal patterns of malaria cases in many parts of Africa are generally associated with rainfall, yet in the dry seasons, malaria transmission declines but does not always cease. It is important to understand what conditions support these periodic cases. Aerial moisture is thought to be important for mosquito survival and ability to forage, but its role during the dry seasons has not been well studied. During the dry season aerial moisture is minimal, but intermittent periods may arise from the transpiration of peri-domestic trees or from some other sources in the environment. These periods may provide conditions to sustain pockets of mosquitoes that become active and forage, thereby transmitting malaria. In this work, humidity along with other ecological variables that may impact malaria transmission have been examined.
Methods
Negative binomial regression models were used to explore the association between peri-domestic tree humidity and local malaria incidence. This was done using sensitive temperature and humidity loggers in the rural Southern Province of Zambia over three consecutive years. Additional variables including rainfall, temperature and elevation were also explored.
Results
A negative binomial model with no lag was found to best fit the malaria cases for the full year in the evaluated sites of the Southern Province of Zambia. Local tree and granary night-time humidity and temperature were found to be associated with local health centre-reported incidence of malaria, while rainfall and elevation did not significantly contribute to this model. A no lag and one week lag model for the dry season alone also showed a significant effect of humidity, but not temperature, elevation, or rainfall.
Conclusion
The study has shown that throughout the dry season, periodic conditions of sustained humidity occur that may permit foraging by resting mosquitoes, and these periods are associated with increased incidence of malaria cases. These results shed a light on conditions that impact the survival of the common malaria vector species, Anopheles arabiensis, in arid seasons and suggests how they emerge to forage when conditions permit.
Funder
Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference35 articles.
1. WHO. World Malaria Report 2018. Geneva: World Health Organization; 2018.
2. WHO. Action and Investment to Defeat Malaria 2016–2030. For a Malaria Free World. Geneva: World Health Organization; 2015.
3. Macdonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957.
4. Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha FO, et al. Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis. 2010;201:1764–74.
5. Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malar J. 2008;7:40.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献