Impact of aerial humidity on seasonal malaria: an ecological study in Zambia

Author:

Duque Carolina,Lubinda Mukuma,Matoba Japhet,Sing’anga Caison,Stevenson Jennifer,Shields Timothy,Shiff Clive J.ORCID

Abstract

Abstract Background Seasonal patterns of malaria cases in many parts of Africa are generally associated with rainfall, yet in the dry seasons, malaria transmission declines but does not always cease. It is important to understand what conditions support these periodic cases. Aerial moisture is thought to be important for mosquito survival and ability to forage, but its role during the dry seasons has not been well studied. During the dry season aerial moisture is minimal, but intermittent periods may arise from the transpiration of peri-domestic trees or from some other sources in the environment. These periods may provide conditions to sustain pockets of mosquitoes that become active and forage, thereby transmitting malaria. In this work, humidity along with other ecological variables that may impact malaria transmission have been examined. Methods Negative binomial regression models were used to explore the association between peri-domestic tree humidity and local malaria incidence. This was done using sensitive temperature and humidity loggers in the rural Southern Province of Zambia over three consecutive years. Additional variables including rainfall, temperature and elevation were also explored. Results A negative binomial model with no lag was found to best fit the malaria cases for the full year in the evaluated sites of the Southern Province of Zambia. Local tree and granary night-time humidity and temperature were found to be associated with local health centre-reported incidence of malaria, while rainfall and elevation did not significantly contribute to this model. A no lag and one week lag model for the dry season alone also showed a significant effect of humidity, but not temperature, elevation, or rainfall. Conclusion The study has shown that throughout the dry season, periodic conditions of sustained humidity occur that may permit foraging by resting mosquitoes, and these periods are associated with increased incidence of malaria cases. These results shed a light on conditions that impact the survival of the common malaria vector species, Anopheles arabiensis, in arid seasons and suggests how they emerge to forage when conditions permit.

Funder

Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference35 articles.

1. WHO. World Malaria Report 2018. Geneva: World Health Organization; 2018.

2. WHO. Action and Investment to Defeat Malaria 2016–2030. For a Malaria Free World. Geneva: World Health Organization; 2015.

3. Macdonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957.

4. Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha FO, et al. Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis. 2010;201:1764–74.

5. Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malar J. 2008;7:40.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3