Author:
Niaré Karamoko,Greenhouse Bryan,Bailey Jeffrey A.
Abstract
Abstract
Background
Accurate variant calls from whole genome sequencing (WGS) of Plasmodium falciparum infections are crucial in malaria population genomics. Here a falciparum variant calling pipeline based on GATK version 4 (GATK4) was optimized and applied to 6626 public Illumina WGS samples.
Methods
Control WGS and accurate PacBio assemblies of 10 laboratory strains were leveraged to optimize parameters that control the heterozygosity, local assembly region size, ploidy, mapping and base quality in both GATK HaplotypeCaller and GenotypeGVCFs. From these controls, a high-quality training dataset was generated to recalibrate the raw variant data.
Results
On current high-quality samples (read length = 250 bp, insert size = 405–524 bp), the optimized pipeline shows improved sensitivity (86.6 ± 1.7% for SNPs and 82.2 ± 5.9% for indels) compared to the default GATK4 pipeline (77.7 ± 1.3% for SNPs; and 73.1 ± 5.1% for indels, adjusted P < 0.001) and previous variant calling with GATK version 3 (GATK3, 70.3 ± 3.0% for SNPs and 59.7 ± 5.8% for indels, adjusted P < 0.001). Its sensitivity on simulated mixed infection samples (80.8 ± 6.1% for SNPs and 78.3 ± 5.1% for indels) was again improved relative to default GATK4 (68.8 ± 6.0% for SNPs and 38.9 ± 0.7% for indels, adjusted, adjusted P < 0.001). Precision was high and comparable across all pipelines on each type of data tested. The resulting combination of high-quality SNPs and indels increases the resolution of local population population structure detection in sub-Saharan Africa. Finally, increasing ploidy improves the detection of drug resistance mutations and estimation of complexity of infection.
Conclusions
Overall, this study provides an optimized falciparum GATK4 pipeline resource for variant calling which should help improve genomic studies of malaria.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference26 articles.
1. WHO. World malaria report 2021. Geneva: World Health Organization; 2021. https://apps.who.int/iris/bitstream/handle/10665/350147/9789240040496-eng.pdf.
2. Gamboa D, Ho M-F, Bendezu J, Torres K, Chiodini PL, Barnwell JW, et al. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS ONE. 2010;5:e8091.
3. Koita OA, Doumbo OK, Ouattara A, Tall LK, Konaré A, Diakité M, et al. False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg. 2012;86:194–8.
4. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.
5. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511.