Glycemia affects glomerular filtration rate in people with type 2 diabetes

Author:

Weil E. Jennifer,Kobes Sayuko,Jones Lois I.,Hanson Robert L.ORCID

Abstract

Abstract Background In type 2 diabetes (T2DM), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation for estimated glomerular filtration rate (eGFR) systematically underestimates the measured adjusted glomerular filtration rate (aGFR) when aGFR is high. We studied the extent to which glycemic variables associate with kidney function, and developed equations including these variables that estimate aGFR in people with T2DM. Methods Diabetic Pima people had aGFR measured from iothalamate clearance divided by body surface area. eGFRs < 60 ml/min/1.73m2 were excluded. Multivariate linear regression identified variables correlated with kidney function. We constructed equations for approximating aGFR. Correlation analysis and 10-fold cross-validation were used to compare the CKD-EPI equation and the new approximating equations to the measured aGFR. Ability to detect hyperfiltration, defined as aGFR > 120 ml/min/1.73m2, was compared by analysis of receiver-operating (ROC) curves. Results aGFR was measured 2798 times in 269 individuals. HbA1c, fasting plasma glucose (FPG), age, and serum creatinine (SCR) were significantly associated with aGFR. The best equations for approximating aGFR used HbA1c and FPG in addition to age and SCR. They approximate aGFR in this cohort of obese people with T2DM more precisely than the CKD-EPI equation. Analysis of ROC curves show that these equations detect hyperfiltration better than does the CKD-EPI equation. Conclusions HbA1c, FPG, age, and SCR yielded the best equations for estimating aGFR in these subjects. The new equations identify hyperfiltration better than the CKD-EPI equation in this cohort and may inform clinical decisions regarding hyperfiltration in individuals with T2DM.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3