Author:
McAdams Meredith C.,Li Michael,Xu Pin,Gregg L. Parker,Patel Jiten,Willett Duwayne L.,Velasco Ferdinand,Lehmann Christoph U.,Hedayati S. Susan
Abstract
Abstract
Background
Acute kidney injury (AKI) is a common complication in patients hospitalized with COVID-19 and may require renal replacement therapy (RRT). Dipstick urinalysis is frequently obtained, but data regarding the prognostic value of hematuria and proteinuria for kidney outcomes is scarce.
Methods
Patients with positive severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) PCR, who had a urinalysis obtained on admission to one of 20 hospitals, were included. Nested models with degree of hematuria and proteinuria were used to predict AKI and RRT during admission. Presence of Chronic Kidney Disease (CKD) and baseline serum creatinine were added to test improvement in model fit.
Results
Of 5,980 individuals, 829 (13.9%) developed an AKI during admission, and 149 (18.0%) of those with AKI received RRT. Proteinuria and hematuria degrees significantly increased with AKI severity (P < 0.001 for both). Any degree of proteinuria and hematuria was associated with an increased risk of AKI and RRT. In predictive models for AKI, presence of CKD improved the area under the curve (AUC) (95% confidence interval) to 0.73 (0.71, 0.75), P < 0.001, and adding baseline creatinine improved the AUC to 0.85 (0.83, 0.86), P < 0.001, when compared to the base model AUC using only proteinuria and hematuria, AUC = 0.64 (0.62, 0.67). In RRT models, CKD status improved the AUC to 0.78 (0.75, 0.82), P < 0.001, and baseline creatinine improved the AUC to 0.84 (0.80, 0.88), P < 0.001, compared to the base model, AUC = 0.72 (0.68, 0.76). There was no significant improvement in model discrimination when both CKD and baseline serum creatinine were included.
Conclusions
Proteinuria and hematuria values on dipstick urinalysis can be utilized to predict AKI and RRT in hospitalized patients with COVID-19. We derived formulas using these two readily available values to help prognosticate kidney outcomes in these patients. Furthermore, the incorporation of CKD or baseline creatinine increases the accuracy of these formulas.
Publisher
Springer Science and Business Media LLC