METTL3 enhances NSD2 mRNA stability to reduce renal impairment and interstitial fibrosis in mice with diabetic nephropathy

Author:

Tang Weiming,Zhao Yilin,Zhang Hui,Peng Ying,Rui Zhilian

Abstract

Abstract Background Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone methyltransferase that has been demonstrated to regulate insulin secretion and glucose concentration. This study focused on the role of NSD2 in the renal impairment during diabetic nephropathy (DN). Methods Serum NSD2 level in patients with DN was examined, and its correlations with the renal impairment-related indicators were examined. A murine model of DN was established, and mouse mesangial cells (SV40-MES-13) were treated with high-glucose (HG) to mimic a DN-like condition in vitro. Overexpression of NSD2 was introduced into mice or cells for in vivo and in vitro studies. The m6A level in HG-treated SV40-MES-13 cells was analyzed. METTL3 expression and its correlation with NSD2 were determined. Results NSD2 was poorly expressed in the serum of patients with DN and was negatively correlated with the levels of fasting blood sugar (FBG), serum creatinine (SCr), serum cystatin C (S-Cys-C), the 24-h urine protein (24-h U-protein) and the urine cystatin C (U-Cys-C). NSD2 overexpression reduced the kidney weight and reduced renal impairment in mice. It also suppressed interstitial fibrosis in mouse kidney tissues and reduced fibrosis-related markers in HG-treated SV40-MES-13 cells. HG treatment reduced the m6A level in the cells. METTL3 promoted m6A modification of NDS2 mRNA and enhanced its stability by YTHDF1. METTL3 overexpression alleviated renal impairment and fibrosis in vivo and in vitro. But the protective role was blocked upon NSD2 silencing. Conclusion This study demonstrates that METTL3 promotes NSD2 mRNA stability by YTHDF1 to alleviate progression of DN.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3