Automated lung ultrasound image assessment using artificial intelligence to identify fluid overload in dialysis patients

Author:

Tan Grace Feng Ling,Du Tiehua,Liu Justin Shuang,Chai Chung Cheen,Nyein Chan Maung,Liu Allen Yan Lun

Abstract

Abstract Background Fluid assessment is challenging, and fluid overload poses a significant problem among dialysis patients, with pulmonary oedema being the most serious consequence. Our study aims to develop a simple objective fluid assessment strategy using lung ultrasound (LUS) and artificial intelligence (AI) to assess the fluid status of dialysis patients. Methods This was a single-centre study of 76 hemodialysis and peritoneal dialysis patients carried out between July 2020 to May 2022. The fluid status of dialysis patients was assessed via a simplified 8-point LUS method using a portable handheld ultrasound device (HHUSD), clinical examination and bioimpedance analysis (BIA). The primary outcome was the performance of 8-point LUS using a portable HHUSD in diagnosing fluid overload compared to physical examination and BIA. The secondary outcome was to develop and validate a novel AI software program to quantify B-line count and assess the fluid status of dialysis patients. Results Our study showed a moderate correlation between LUS B-line count and fluid overload assessed by clinical examination (r = 0.475, p < 0.001) and BIA (r = 0.356. p < 0.001). The use of AI to detect B-lines on LUS in our study for dialysis patients was shown to have good agreement with LUS B lines observed by physicians; (r = 0.825, p < 0.001) for the training dataset and (r = 0.844, p < 0.001) for the validation dataset. Conclusion Our study confirms that 8-point LUS using HHUSD, with AI-based detection of B lines, can provide clinically useful information on the assessment of hydration status and diagnosis of fluid overload for dialysis patients in a user-friendly and time-efficient way.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3