Mitochondrial pyruvate carrier: a potential target for diabetic nephropathy

Author:

Zhu Huanhuan,Wan Huiting,Wu Lin,Li Qing,Liu Simeng,Duan Suyan,Huang Zhimin,Zhang Chengning,Zhang Bo,Xing Changying,Yuan Yanggang

Abstract

Abstract Background Mitochondrial dysfunction contributes to the pathogenesis of diabetic nephropathy (DN). Mitochondrial pyruvate carrier 1 (MPC1) and mitochondrial pyruvate carrier 2 (MPC2) play a bottleneck role in the transport of pyruvate into mitochondrial across the mitochondrial inner membrane. A previous study showed that increasing mitochondrial pyruvate carrier content might ameliorate diabetic kidney disease in db/db mice. However, the expression status of MPC1 and MPC2 in patients with DN is unclear. Methods Patients with primary glomerulonephropathy (PGN, n = 30), PGN with diabetes mellitus (PGN-DM, n = 30) and diabetic nephropathy (DN, n = 30) were included. MPC1 and MPC2 protein levels were examined by immunohistochemistry. The expression of MPC in different groups was evaluated by the Kruskal-Wallis test. Spearman’s rank correlation was performed for correlation analysis between MPC levels and clinical factors. Results Both MPC1 and MPC2 were localized in renal tubules. Levels of MPC1 and MPC2 were lower in DN patients than in PGN patients and in PGN patients with DM, whereas there were no differences in MPC1 and MPC2 levels among DN stage II to stage IV. Moreover, both MPC1 and MPC2 levels were significantly correlated with serum creatinine, BUN and eGFR in patients with DN, whereas no analogous trend was observed in nondiabetic kidney disease. Conclusions Our study indicated that MPC localized in renal tubules, which were significantly decreased in DN. MPC was associated with clinical features, especially those representing renal functions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Scholarship Council

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3