NMDA receptor-mediated CaMKII/ERK activation contributes to renal fibrosis

Author:

Zhou Jingyi,Liu Shuaihui,Guo Luying,Wang Rending,Chen Jianghua,Shen Jia

Abstract

Abstract Background This study aimed to understand the mechanistic role of N-methyl-D-aspartate receptor (NMDAR) in acute fibrogenesis using models of in vivo ureter obstruction and in vitro TGF-β administration. Methods Acute renal fibrosis (RF) was induced in mice by unilateral ureteral obstruction (UUO). Histological changes were observed using Masson’s trichrome staining. The expression levels of NR1, which is the functional subunit of NMDAR, and fibrotic and epithelial-to-mesenchymal transition markers were measured by immunohistochemical and Western blot analysis. HK-2 cells were incubated with TGF-β, and NMDAR antagonist MK-801 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) antagonist KN-93 were administered for pathway determination. Chronic RF was introduced by sublethal ischemia–reperfusion injury in mice, and NMDAR inhibitor dextromethorphan hydrobromide (DXM) was administered orally. Results The expression of NR1 was upregulated in obstructed kidneys, while NR1 knockdown significantly reduced both interstitial volume expansion and the changes in the expression of α-smooth muscle actin, S100A4, fibronectin, COL1A1, Snail, and E-cadherin in acute RF. TGF-β1 treatment increased the elongation phenotype of HK-2 cells and the expression of membrane-located NR1 and phosphorylated CaMKII and extracellular signal–regulated kinase (ERK). MK801 and KN93 reduced CaMKII and ERK phosphorylation levels, while MK801, but not KN93, reduced the membrane NR1 signal. The levels of phosphorylated CaMKII and ERK also increased in kidneys with obstruction but were decreased by NR1 knockdown. The 4-week administration of DXM preserved renal cortex volume in kidneys with moderate ischemic–reperfusion injury. Conclusions NMDAR participates in both acute and chronic renal fibrogenesis potentially via CaMKII-induced ERK activation.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3