Establishment of a novel nomogram for the clinically diagnostic prediction of minimal change disease, −a common cause of nephrotic syndrome

Author:

Yan Gaofei,Liu Guanzhi,Tian Xuefei,Tian Lifang,Wang Hao,Ren Peiyao,Ma Xiaotao,Fu Rongguo,Chen Zhao

Abstract

Abstract Background Minimal change disease (MCD) is one of the major causes of nephrotic syndrome (NS). A confirmed MCD diagnosis mainly depends on renal biopsy at present, which is an invasive procedure with many potential risks. The overall incidence of complications caused by renal biopsy procedures has been reported as approximately 11 and 6.6% outside and within China, respectively. Unfortunately, there is currently no noninvasive procedure or practical classification method for distinguishing MCD from other primary glomerular diseases available. Method A total of 1009 adult patients who underwent renal biopsy between January 2017 and November 2019 were enrolled in this study. Twenty-five parameters extracted from patient demographics, clinical manifestations, and laboratory test results were statistically analysed. LASSO regression analysis was further performed on these parameters. The parameters with the highest area under the curve (AUC) were selected and used to establish a logistic diagnostic prediction model. Results Of the 25 parameters, 14 parameters were significantly different (P < 0.05). MCD patients were mostly younger (36 (22, 55) vs. 41 (28.75, 53)) and male (59% vs. 52%) and had lower levels of diastolic blood pressure (DBP) (79 (71, 85.5) vs. 80 (74, 89)) and IgG (5.42 (3.17, 6.36) vs. 9.38 (6.79, 12.02)) and higher levels of IgM (1.44 (0.96, 1.88) vs. 1.03 (0.71, 1.45)) and IgE (160 (46.7, 982) vs. 47.3 (19, 126)) than those in the non-MCD group. Using the LASSO model, we established a classifier for adults based on four parameters: DBP and the serum levels of IgG, IgM, IgE. We were able to clinically classify adult patients with NS into MCD and non-MCD using this model. The validation accuracy of the logistic regression model was 0.88. A nomogram based on these four classifiers was developed for clinical use that could predict the probability of MCD in adult patients with NS. Conclusions A LASSO model can be used to distinguish MCD from other primary glomerular diseases in adult patients with NS. Combining the model and the nomogram potentially provides a novel and valuable approach for nephrologists to diagnose MCD, avoiding the complications caused by renal biopsy.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3