Author:
Choi Gwangho,Yoon Ho Joong,Song Young Jin,Jeong Hae Min,Gu Jae Eon,Han Miyeun,Kim Seok Hyung,Yoon Jong-Woo,Kim Hyunsuk
Abstract
Abstract
Background
As hemodialysis is administered with the patient lying down, the distribution of body fluid is stable in the lying position, which is why this position is recommended for bioimpedance analysis (BIA). Although the InBody S10 is widely used for hemodialysis patients in the lying position, clinicians must make the measurements in person. In contrast, patients can use the InBody 770 to obtain measurements by themselves in the standing position, which may be more convenient. Therefore, this study compared the measurements of hemodialysis patients’ estimated target weight and ECW/TBW obtained lying down using the S10 to those obtained in the standing position using the 770.
Methods
This study was conducted among maintenance hemodialysis patients at Chuncheon Sacred Heart Hospital in October 2020. Measurements from 56 patients before and after hemodialysis were obtained using the 2 machines. Each (S10 or 770) estimated target weight, both pre- and post-hemodialysis, was considered ideal when the ECW/TBW ratio was 0.380. R2 was calculated and the Bland-Altman test was performed.
Results
The patients’ median age was 64 years old, and 51% were men. The actual ultrafiltration was 2 kg, and the mean TBW change measured using the InBody devices was 1.5 L (R2 = 0.718) for the S10 and 1.7 L (R2 = 0.616) for the 770. The estimated target weight at pre- and post-hemodialysis showed a remarkably high correlation with the patients’ actual pre- and post-hemodialysis weight (R2 > 0.095). The correlation between these measurements (lying vs. standing) before and after hemodialysis was also very close (R2 = 1.0000). In addition, ECW/TBW had a good correlation (R2 ≥ 0.970) The Bland-Altman test of dry weight and ECW/TBW yielded similar results.
Conclusions
This study showed that patients’ estimated target weights in the lying position using the InBody S10 device and in the standing position using the InBody 770 device were consistent in both pre- and post-hemodialysis states.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Fürstenberg A, Davenport A. Assessment of body composition in peritoneal dialysis patients using bioelectrical impedance and dual-energy x-ray absorptiometry. Am J Nephrol. 2011;33(2):150–6.
2. So W-Y, Swearingin B, Crooms B, Lee R, Choi Y, Dail TK, et al. Body composition measurements determined by air displacement plethysmography and eight-polar bioelectrical impedance analysis are equivalent in African American college students. Healthmed. 2012;6(6):1896–9.
3. Sartorio A, Malavolti M, Agosti F, Marinone P, Caiti O, Battistini N, et al. Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis. Eur J Clin Nutr. 2005;59(2):155–60.
4. Utter AC, Lambeth PG. Evaluation of multifrequency bioelectrical impedance analysis in assessing body composition of wrestlers. Med Sci Sports Exerc. 2010;42(2):361–7.
5. Gibson AL, Holmes JC, Desautels RL, Edmonds LB, Nuudi L. Ability of new octapolar bioimpedance spectroscopy analyzers to predict 4-component–model percentage body fat in Hispanic, black, and white adults. Am J Clin Nutr. 2008;87(2):332–8.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献