The ensemble learning model is not better than the Asian modified CKD-EPI equation for glomerular filtration rate estimation in Chinese CKD patients in the external validation study

Author:

Zhao Li,Zhang Jing-jing,Tian Xin,Huang Jian-min,Xie Peng,Li Xiang-zhou

Abstract

Abstract Objective To assess the clinical practicability of the ensemble learning model established by Liu et al. in estimating glomerular filtration rate (GFR) and validate whether it is a better model than the Asian modified Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation in a cohort of Chinese chronic kidney disease (CKD) patients in an external validation study. Methods According to the ensemble learning model and the Asian modified CKD-EPI equation, we calculated estimated GFRensemble and GFRCKD-EPI, separately. Diagnostic performance of the two models was assessed and compared by correlation coefficient, regression equation, Bland–Altman analysis, bias, precision and P30 under the premise of 99mTc-diethylenetriaminepentaacetic acid (99mTc-DTPA) dual plasma sample clearance method as reference method for GFR measurement (mGFR). Results A total of 158 Chinese CKD patients were included in our external validation study. The GFRensemble was highly related with mGFR, with the correlation coefficient of 0.94. However, regression equation of GFRensemble = 0.66*mGFR + 23.05, the regression coefficient was far away from one, and the intercept was wide. Compared with the Asian modified CKD-EPI equation, the diagnostic performance of the ensemble learning model also demonstrated a wider 95% limit of agreement in Bland-Altman analysis (52.6 vs 42.4 ml/min/1.73 m2), a poorer bias (8.0 vs 1.0 ml/min/1.73 m2, P = 0.02), an inferior precision (18.4 vs 12.7 ml/min/1.73 m2, P < 0.001) and a lower P30 (58.9% vs 74.1%, P < 0.001). Conclusions Our study showed that the ensemble learning model cannot replace the Asian modified CKD-EPI equation for the first choice for GFR estimation in overall Chinese CKD patients.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Reference19 articles.

1. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from kidney disease improving global outcomes. Small Rumin Res. 2007;80(3):73–9.

2. Bikbov B, Purcell CA, Levey AS, Smith M, Murray CJL. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395(10225):709–33.

3. Collins AJ, Foley RN, Chavers B, Gilbertson D, Agodoa L. USRDS annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Am J Kidney Dis. 2013;2014(63):e1–e478.

4. Levey A, Inker S, Lesley A. GFR as the "Gold Standard": Estimated, Measured, and True. In: American Journal of Kidney Diseases the Official Journal of the National Kidney Foundation; 2016.

5. Levey AS, Stevens LA, Schmid CH, Zhang YL, Feldman H. A New Equation to Estimate Glomerular Filtration Rate. Ann Intern Med. 2011;55(6):408.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3