A Metabolomics study of metabolites associated with the glomerular filtration rate

Author:

Peng Hongquan,Liu Xun,Ieong Chiwa Ao,Tou Tou,Tsai Tsungyang,Zhu Haibin,Liu Zhi,Liu Peijia

Abstract

Abstract Background Chronic kidney disease (CKD) is a global public health issue. The diagnosis of CKD would be considerably enhanced by discovering novel biomarkers used to determine the glomerular filtration rate (GFR). Small molecule metabolites related to kidney filtration function that might be utilized as biomarkers to measure GFR more accurately could be found via a metabolomics analysis of blood samples taken from individuals with varied glomerular filtration rates. Methods An untargeted metabolomics study of 145 plasma samples was performed using ultrahigh-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS). The 145 samples were divided into four groups based on the patient’s measured glomerular filtration rates (mGFRs) determined by the iohexol plasma clearance rate. The data were analyzed using random forest analyses and six other unique statistical analyses. Principal component analysis (PCA) was conducted using R software. Results A large number of metabolites involved in various metabolic pathways changed significantly between groups with different GFRs. These included metabolites involved in tryptophan or pyrimidine metabolism. The top 30 metabolites that best distinguished between the four groups in a random forest plot analysis included 13 amino acids, 9 nucleotides, and 3 carbohydrates. A panel of metabolites (including hydroxyaparagine, pseudouridine, C-glycosyltryptophan, erythronate, N-acetylalanine, and 7-methylguanidine) for estimating GFR was selected for future testing in targeted analyses by combining the candidate lists with the six other statistical analyses. Both hydroxyasparagine and N,N-dimethyl-proline-proline are unique biomarkers shown to be inversely associated with kidney function that have not been reported previously. In contrast, 1,5-anhydroglucitol (1,5-AG) decreases with impaired renal function. Conclusions This global untargeted metabolomics study of plasma samples from patients with different degrees of renal function identified potential metabolite biomarkers related to kidney filtration. These novel potential metabolites provide more insight into the underlying pathophysiologic processes that may contribute to the progression of CKD, lead to improvements in the estimation of GFR and provide potential therapeutic targets to improve kidney function.

Funder

The Science and Technology Development Fund, Macau SAR

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3