Abstract
Abstract
Background
Alport syndrome is a hereditary kidney disease characterized by hematuria and proteinuria. Although there have been reports of autosomal dominant COL4A4 variants, this is likely an underdiagnosed condition. Improved access to affordable genetic testing has increased the diagnosis of Alport syndrome. As genetic testing becomes ubiquitous, it is imperative that clinical nephrologists understand the benefits and challenges associated with clinical genetic testing.
Case Presentation
We present a family of Mexican descent with a heterozygous COL4A4 variant (c.5007delC, ClinVar accession numbers: SCV001580980.2, SCV001993731.1) not previously discussed in detail in the literature. The proband received a biopsy diagnosis suggestive of Fabry disease 18 years after she first developed hematuria and progressed to chronic kidney disease stage III. One year later, the proband was provisionally diagnosed with Alport syndrome after a variant of uncertain significance in the COL4A4 gene was identified following targeted family variant testing of her daughter. Upon review of the medical histories of the proband’s children and niece, all but one had the same variant. Of the four with the variant, three display clinical symptoms of hematuria, and/or proteinuria. The youngest of the four, only months old, has yet to exhibit clinical symptoms. Despite these findings there was a considerable delay in synthesizing this data, as patients were tested in different commercial genetic testing laboratories. Subsequently, understanding this family’s inheritance pattern, family history, and clinical symptoms, as well as the location of the COL4A4 variant resulted in the upgrade of the variant’s classification. Although the classification of this variant varied among different clinical genetic testing laboratories, the consensus was that this variant is likely pathogenic.
Conclusions
This COL4A4 variant (c.5007delC) not yet discussed in detail in the literature is associated with Alport syndrome. The inheritance pattern is suggestive of autosomal dominant inheritance. This report highlights the intricacies of variant interpretation and classification, the siloed nature of commercial genetic testing laboratories, and the importance of a thorough family history for proper variant interpretation. Additionally, the cases demonstrate the varied clinical presentations of Alport syndrome and suggest the utility of early screening, diagnosis, monitoring, and treatment.
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Groopman EE, Rasouly HM, Gharavi AG. Genomic medicine for kidney disease. Nat Rev Nephrol. 2018;14(2):83–104. https://doi.org/10.1038/nrneph.2017.167.
2. Mehta L, Jim B. Hereditary renal diseases. Semin Nephrol. 2017;37(4):354–61. https://doi.org/10.1016/j.semnephrol.2017.05.007.
3. Bullich G, Domingo-Gallego A, Vargas I, Ruiz P, Lorente-Grandoso L, Furlano M, et al. A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. Kidney Int. 2018;94(2):363–71. https://doi.org/10.1016/j.kint.2018.02.027.
4. Kashtan CE. Alport Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews(®). Seattle (WA): University of Washington, Seattle Copyright © 1993–2021, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.; 1993.
5. Kashtan CE, Michael AF. Alport syndrome. Kidney Int. 1996;50(5):1445–63. https://doi.org/10.1038/ki.1996.459.