Identifying cellular senescence associated genes involved in the progression of end-stage renal disease as new biomarkers

Author:

Xi Yu-jia,Guo Qiang,Zhang Ran,Duan Guo-sheng,Zhang Sheng-xiao

Abstract

Abstract Background Cellular senescence plays an essential role in the development and progression of end-stage renal disease (ESRD). However, the detailed mechanisms phenomenon remains unclear. Methods The mRNA expression profiling dataset GSE37171 was taken from the Gene Expression Omnibus (GEO) database. The cell senescence-associated hub genes were selected by applying protein–protein interaction (PPI), followed by correlation analysis, gene interaction analysis, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We next explored the relationships of hub genes with miRNAs, TFs, and diseases. The absolute abundance of eight immune cells and two stromal cells were calculated by MCPcount and the correlation of hub genes with these ten cells was analyzed. Lasso was used to selecting for trait genes. ROC curves and DCA decision curves were used to assess the accuracy and predictive power of the trait genes. Results A total of 65 cellular senescence signature genes were identified among patients and controls. The PPI network screened out ten hub genes. GO and KEGG indicated that ten hub genes were associated with ESRD progression. Transcription factor gene interactions and common regulatory networks of miRNAs were also identified in the datasets. The hub genes were significantly correlated with immune cells and stromal cells. Then the lasso model was constructed to screen out the five most relevant signature genes (FOS, FOXO3, SIRT1, TP53, SMARCA4). The area under the ROC curve (AUC) showed that these five characteristic genes have good resolving power for the diagnostic model. Conclusions Our findings suggested that cellular senescence-associated genes played an important role in the development of ESRD and immune regulation.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3