Deep learning-based multi-model approach on electron microscopy image of renal biopsy classification

Author:

Zhang Jingyuan,Zhang AihuaORCID

Abstract

Abstract Background Electron microscopy is important in the diagnosis of renal disease. For immune-mediated renal disease diagnosis, whether the electron-dense granule is present in the electron microscope image is of vital importance. Deep learning methods perform well at feature extraction and assessment of histologic images. However, few studies on deep learning methods for electron microscopy images of renal biopsy have been published. This study aimed to develop a deep learning-based multi-model to automatically detect whether the electron-dense granule is present in the TEM image of renal biopsy, and then help diagnose immune-mediated renal disease. Methods Three deep learning models are trained to classify whether the electron-dense granule is present using 910 electron microscopy images of renal biopsies. We proposed two novel methods to improve the model accuracy. One model uses the pre-trained ResNet convolutional layers for feature extraction with transfer learning which was firstly improved with skip architecture, then uses Support Vector Machine as the classifier. We developed a multi-model to combine the traditional ResNet model with the improved one to further improve the accuracy. Results Deep learning-based multi-model has the highest model accuracy, and the average accuracy is about 88%. The improved ReseNet + SVM model performance is much better than the traditional ResNet model. The average accuracy of the improved ResNet + SVM model is 83%, while the traditional ResNet model accuracy is only 58%. Conclusions This study presents the first models for electron microscopy image classification of Renal Biopsy. Identifying whether the electron-dense granule is present plays an important role in the diagnosis of immune complex nephropathy. This study made it possible for Artificial Intelligence models assist to analyze complex electron microscopy images for disease diagnosis.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3