Author:
Ghazal Abdul Razzak A.,Hajeer Mohammad Y.,Al-Sabbagh Rabab,Alghoraibi Ibrahim,Aldiry Ahmad
Abstract
Abstract
Background
This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires’ surface morphology and potential release of nickel ions following exposure to oral environment conditions.
Methods
Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions’ release by means of atomic absorption spectrophotometer.
Results
Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires.
Conclusions
Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted nitinol wire for use in orthodontics. J Am Dent Assoc. 1971;82(6):1373–5.
2. van Leeuwen EJ, Maltha JC, Kuijpers-Jagtman AM. Tooth movement with light continuous and discontinuous forces in beagle dogs. Eur J Oral Sci. 1999;107(6):468–74.
3. Eliades G, Brantley WA. Instrumental techniques for study of orthodontic materials. In: Brantley WA, Eliades T, editors. Orthodontic materials: scientific and clinical aspects. Stuttgart, Germany: Thieme Medical Publishers; 2001. p. 50–74.
4. Eliades T. Orthodontic materials research and applications: part 2. Current status and projected future developments in materials and biocompatibility. Am J Orthod Dentofac Orthop. 2007;131(2):253–64.
5. House K, Sernetz F, Dymock D, Sandy JR, Ireland AJ. Corrosion of orthodontic appliances—should we care? Am J Orthod Dentofac Orthop. 2008;133(4):584–92.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献