Accuracy of deep learning-based integrated tooth models by merging intraoral scans and CBCT scans for 3D evaluation of root position during orthodontic treatment

Author:

Lee Suk-Cheol,Hwang Hyeon-Shik,Lee Kyungmin ClaraORCID

Abstract

Abstract Objective This study aimed to evaluate the accuracy of deep learning-based integrated tooth models (ITMs) by merging intraoral scans and cone-beam computed tomography (CBCT) scans for three-dimensional (3D) evaluation of root position during orthodontic treatment and to compare the fabrication process of integrated tooth models (ITMs) with manual method. Material and methods Intraoral scans and corresponding CBCT scans before and after treatment were obtained from 15 patients who completed orthodontic treatment with premolar extraction. A total of 600 ITMs were generated using deep learning technology and manual methods by merging the intraoral scans and CBCT scans at pretreatment. Posttreatment intraoral scans were integrated into the tooth model, and the resulting estimated root positions were compared with the actual root position at posttreatment CBCT. Discrepancies between the estimated and actual root position including average surface differences, arch widths, inter-root distances, and root axis angles were obtained in both the deep learning and manual method, and these measurements were compared between the two methods. Results The average surface differences of estimated and actual ITMs in the manual method were 0.02 mm and 0.03 mm for the maxillary and mandibular arches, respectively. In the deep learning method, the discrepancies were 0.07 mm and 0.08 mm for the maxillary and mandibular arches, respectively. For the measurements of arch widths, inter-root distances, and root axis angles, there were no significant differences between estimated and actual models both in the manual and in the deep learning methods, except for some measurements. Comparing the two methods, only three measurements showed significant differences. The procedure times taken to obtain the measurements were longer in the manual method than in the deep learning method. Conclusion Both deep learning and manual methods showed similar accuracy in the integration of intraoral scans and CBCT images. Considering time and efficiency, the deep learning automatic method for ITMs is highly recommended for clinical practice.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Orthodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3