Abstract
Abstract
Background
The aim of the study was to investigate the effect of three aligner cleaners on the composition and mechanical properties of two types of orthodontic aligners.
Materials and methods
The cleaners tested were two alkaline peroxide solutions (Retainer Brite—RB; Retainer Cleaner—RC) and one peroxide-free (Steraligner—ST) and the aligners Clear Aligner (C, polyester) and Invisalign (I, polyester–urethane). The aligners were immersed in the cleaner solutions as instructed every day (15 min for RB, RC; 5 min for ST) for a two-week period. The acidity of the solutions was tested with a pH meter. The changes in the chemical composition of the aligners were studied by attenuated total-reflection Fourier transform infrared spectrometry (ATR-FTIR), while Instrumented Indentation Testing (IIT) was used for assessment of changes in Martens Hardness (HM), modulus (EIT), elastic index (nIT) and relaxation (RIT).
Results
RB and RC were weakly acidic (pH = 6.3), whereas ST was mildly acidic (pH = 4.8). The ATR-FTIR analysis demonstrated evidence of acidic hydrolysis of C in ST and I in RB. The IIT-derived properties of I were not affected by the cleaners. However, for C a significant change was found in HM (all cleaners), nIT (all cleaners) and RIT (RB, ST). Although the chemical changes support a hydrolytic material deterioration, the results of mechanical properties may interfere with the material residual stresses during fabrication.
Conclusions
Caution should be exerted in the selection of aligner cleaners. The mild acidic cleanser was more aggressive to the polyester, whereas an alkaline peroxide to the polyester–urethane aligner.
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Flores-Mir C, Brandelli J, Pacheco-Pereira C. Patient satisfaction and quality of life status after 2 treatment modalities: invisalign and conventional fixed appliances. Am J Orthod Dentofac Orthop. 2018;154(5):639–44.
2. Rosvall MD, Fields HW, Ziuchkovski J, Rosenstiel SF, Johnston WM. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofac Orthoped. 2009;135(3):276 e271-12 (discussion 276–77).
3. Alexandropoulos A, Al Jabbari YS, Zinelis S, Eliades T. Chemical and mechanical characteristics of contemporary thermoplastic orthodontic materials. Aust Orthod J. 2015;31(2):165–70.
4. Papadopoulou AK, Cantele A, Polychronis G, Zinelis S, Eliades T. Changes in roughness and mechanical properties of invisalign((R)) appliances after one- and two-weeks use. Materials. 2019;12(15):2406.
5. Levrini L, Novara F, Margherini S, Tenconi C, Raspanti M. Scanning electron microscopy analysis of the growth of dental plaque on the surfaces of removable orthodontic aligners after the use of different cleaning methods. Clin Cosmet Investig Dent. 2015;7:125–31.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献