Author:
Insabralde Natalia Martins,Poletti Thaís,Conti Ana Cláudia,Oltramari-Navarro Paula Vanessa,Lopes Murilo B,Flores-Mir Carlos,de Almeida Marcio Rodrigues
Abstract
Abstract
Background
The objective of this study is to evaluate the force-deflection behavior of beta-titanium alloy wires between two leveled and unleveled bracket alignment scenarios using a three-point bending test.
Methods
Six groups of ten beta-titanium alloy wire segments (0.017 × 0.025-in. diameter) of different manufacturers (Orthometric, Ortho Organizers, GAC, Morelli, and Ormco) were used. Both brackets were bonded to an acrylic jig with a 10-mm interbracket distance. A 1-mm deflection test in two hypothetical conditions (with aligned brackets and by simulating a 2-mm horizontal displacement of the brackets) was explored. Forces of activation and deactivation of the wires during both tests were compared by an analysis of variance (ANOVA) tests followed by a Tukey test.
Results
A statistically significant difference was found in the force-deflection behavior between some of the wires in both simulated in vitro conditions. For the leveled-type alignment scenario, the differences between wires were up to 70 g (range 110 to 179 g). For the unleveled-type alignment scenario, these differences were up to 65 g (range 111 to 175 g).
Conclusions
The study showed some significant differences in forces generated during activation and deactivation among the five types of beta-titanium wires tested. In comparing leveled and unleveled brackets during activation, only Orthometric Beta Flexy and Ormco Beta-titanium were different between them.
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献