Accurate gingival segmentation from 3D images with artificial intelligence: an animal pilot study

Author:

Yang Min,Li ChenshuangORCID,Yang Wen,Chen Chider,Chung Chun-Hsi,Tanna Nipul,Zheng ZhongORCID

Abstract

Abstract Background Gingival phenotype plays an important role in dental diagnosis and treatment planning. Traditionally, determining the gingival phenotype is done by manual probing of the gingival soft tissues, an invasive and time-consuming procedure. This study aims to evaluate the feasibility and accuracy of an alternatively novel, non-invasive technology based on the precise 3-dimension (3D) soft tissue reconstruction from intraoral scanning and cone beam computed tomography (CBCT) to predict the gingival biotype. Methods As a proof-of-concept, Yorkshire pig mandibles were scanned, and the CBCT data were fed into a deep-learning model to reconstruct the teeth and surrounding bone structure in 3D. By overlaying the CBCT scan with the intraoral scans, an accurate superposition was created and used for virtual measurements of the soft tissue thickness. Meanwhile, gingival thicknesses were also measured by a periodontal probe and digital caliper on the buccal and lingual sides at 3 mm apical to the gingival margin of the posterior teeth and compared with the virtual assessment at the same location. The data obtained from virtual and clinical measurements were compared by Wilcoxon matched-pairs signed-rank analysis, while their correlation was determined by Pearson’s r value. The Mann–Whitney U test was used for intergroup comparisons of the amount of difference. Results Among 108 investigated locations, the clinical and virtual measurements are strongly positively correlated (r = 0.9656, P < 0.0001), and only clinically insignificant differences (0.066 ± 0.223 mm) were observed between the two assessments. There is no difference in the agreement between the virtual and clinical measurements on sexually matured samples (0.087 ± 0.240 mm) and pre-pubertal samples (0.033 ± 0.195 mm). Noticeably, there is a greater agreement between the virtual and clinical measurements at the buccal sites (0.019 ± 0.233 mm) than at the lingual sites (0.116 ± 0.215 mm). Conclusion In summary, the artificial intelligence-based virtual measurement proposed in this work provides an innovative technique potentially for accurately measuring soft tissue thickness using clinical routine 3D imaging systems, which will aid clinicians in generating a more comprehensive diagnosis with less invasive procedures and, in turn, optimize the treatment plans with more predictable outcomes.

Funder

University of Pennsylvania

American Association of Orthodontists Foundation

American Association of Orthodontists

University of Pennsylvania School of Dental Medicine

Department of Orthodontics, University of Pennsylvania School of Dental Medicine

Publisher

Springer Science and Business Media LLC

Subject

Orthodontics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3