Author:
Nanda Vikrum,Gutman Boris,Bar Ehab,Alghamdi Suha,Tetradis Sotirios,Lusis Aldons J,Eskin Eleazar,Moon Won
Abstract
Abstract
Background
The recent advent of 3D photography has created the potential for comprehensive facial evaluation. However, lack of practical true 3D analysis of the information collected from 3D images has been the factor limiting widespread utilization in orthodontics. Current evaluation of 3D facial soft tissue images relies on subjective visual evaluation and 2D distances to assess facial disharmony. The objectives of this project strive to map the surface and define boundaries of 3D facial soft tissue, modify mathematical functions to average multiple 3D facial images, and mathematically average 3D facial images allowing generation of color-coded surface deviation relative to a true average.
Methods
Collaboration headed by UCLA Orthodontics with UCLA Neuroimaging was initiated to modify advanced brain mapping technology to accurately map the facial surface in 3D. 10 subjects were selected as a sample for development of the technical protocol. 3dMD photographic images were segmented, corrected using a series of topology correcting algorithms, and process to create close meshes. Shapes were mapped to a sphere using conformal and area preserving maps, and were then registered using a spherical patch mapping approach. Finally an average was created using 7-parameter procrustes alignment.
Results
Size-standardized average facial images were generated for the sample population. A single patient was then superimposed on the average and color-coded displacement maps were generated to demonstrate the clinical applicability of this protocol. Further confirmation of the methods through 3D superimposition of the initial (T0) average to the 4 week (T4) average was completed and analyzed.
Conclusions
The results of this investigation suggest that it is possible to average multiple facial images of highly variable topology. The immediate application of this research will be rapid and detailed diagnostic imaging analysis for orthodontic and surgical treatment planning. There is great potential for application to anthropometrics and genomics. This investigation resulted in establishment of a protocol for mapping the surface of the human face in three dimensions.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Giampietro F, Salvadori S, Nolet F, Zoia A, Davide F. Assessment of inter- and intra-operator cephalometric tracings on cone beam CT radiographs: comparison of the precision of the cone beam CT versus the latero-lateral radiograph tracing. Prog Orthod. 2014;15:1.
2. Forst D, Najjar S, Flores-Mir C, Carey J, Secanell M, Lagravere M. Comparison of in vivo 3D cone-beam computed tomography tooth volume measurement protocols. Prog Orthod. 2014;15:69.
3. Kau CH, Richmond S, Savio C, Mallorie C. Measuring adult facial morphology in three dimensions. Angle Orthodontics. 2006;76:771–6.
4. Sarver DM, Proffit WR, Ackerman J. Diagnosis and treatment planning in orthodontics. In: Vanarsdall R, Graber TM, editors. Orthodontics: current principles and techniques. St. Louis: Mosby; 2000.
5. Ackerman J, Proffit WR, Sarver DM. The emerging soft tissue paradigm in orthodontic diagnosis and treatment planning. Clin Orthod Res. 1999;2:49–52.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献