Quantitative analysis of 3-dimensional facial soft tissue photographic images: technical methods and clinical application

Author:

Nanda Vikrum,Gutman Boris,Bar Ehab,Alghamdi Suha,Tetradis Sotirios,Lusis Aldons J,Eskin Eleazar,Moon Won

Abstract

Abstract Background The recent advent of 3D photography has created the potential for comprehensive facial evaluation. However, lack of practical true 3D analysis of the information collected from 3D images has been the factor limiting widespread utilization in orthodontics. Current evaluation of 3D facial soft tissue images relies on subjective visual evaluation and 2D distances to assess facial disharmony. The objectives of this project strive to map the surface and define boundaries of 3D facial soft tissue, modify mathematical functions to average multiple 3D facial images, and mathematically average 3D facial images allowing generation of color-coded surface deviation relative to a true average. Methods Collaboration headed by UCLA Orthodontics with UCLA Neuroimaging was initiated to modify advanced brain mapping technology to accurately map the facial surface in 3D. 10 subjects were selected as a sample for development of the technical protocol. 3dMD photographic images were segmented, corrected using a series of topology correcting algorithms, and process to create close meshes. Shapes were mapped to a sphere using conformal and area preserving maps, and were then registered using a spherical patch mapping approach. Finally an average was created using 7-parameter procrustes alignment. Results Size-standardized average facial images were generated for the sample population. A single patient was then superimposed on the average and color-coded displacement maps were generated to demonstrate the clinical applicability of this protocol. Further confirmation of the methods through 3D superimposition of the initial (T0) average to the 4 week (T4) average was completed and analyzed. Conclusions The results of this investigation suggest that it is possible to average multiple facial images of highly variable topology. The immediate application of this research will be rapid and detailed diagnostic imaging analysis for orthodontic and surgical treatment planning. There is great potential for application to anthropometrics and genomics. This investigation resulted in establishment of a protocol for mapping the surface of the human face in three dimensions.

Publisher

Springer Science and Business Media LLC

Subject

Orthodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3