P2X7 receptor regulates leukocyte infiltrations in rat frontoparietal cortex following status epilepticus

Author:

Kim Ji-Eun,Ryu Hea Jin,Yeo Seong-Il,Kang Tae-Cheon

Abstract

Abstract Background In the present study, we investigated the roles of P2X7 receptor in recruitment and infiltration of neutrophil during epileptogenesis in rat epilepsy models. Methods Status epilepticus (SE) was induced by pilocarpine in rats that were intracerebroventricularly infused with either saline, 2',3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), adenosine 5'-triphosphate-2',3'-dialdehyde (OxATP), or IL-1Ra (interleukin 1 receptor antagonist) prior to SE induction. Thereafter, we performed immunohistochemical studies for myeloperoxidase (MPO), CD68, interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2). Results In saline-infused animals, neutrophils and monocytes were observed in frontoparietal cortex (FPC) at 1 day and 2 days after SE, respectively. In BzATP-infused animals, infiltrations of neutrophils and monocytes into the FPC were detected at 12 hr and 1 day after SE, respectively. In OxATP-infused animals, neutrophils and monocytes infiltrated into the FPC at 1 day and 2 days after SE, respectively. However, the numbers of both classes of leukocytes were significantly lower than those observed in the saline-infused group. In piriform cortex (PC), massive leukocyte infiltration was detected in layers III/IV of saline-infused animals at 1-4 days after induction of SE. BzATP or OxATP infusion did not affect neutrophil infiltration in the PC. In addition, P2X7 receptor-mediated MCP-1 (released from microglia)/MIP-2 (released from astrocytes) regulation was related to SE-induced leukocyte infiltration in an IL-1β-independent manner. Conclusions Our findings suggest that selective regulation of P2X7 receptor-mediated neutrophil infiltration may provide new therapeutic approaches to SE or epilepsy.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3