Author:
Ceulemans An-Gaëlle,Zgavc Tine,Kooijman Ron,Hachimi-Idrissi Said,Sarre Sophie,Michotte Yvette
Abstract
Abstract
Background
Stroke is an important cause of morbidity and mortality and few therapies exist thus far. Mild hypothermia (33°C) is a promising neuroprotective strategy to improve outcome after ischemic stroke. However, its complete mechanism of action has not yet been fully elaborated. This study is the first to investigate whether this neuroprotection occurs through modulation of the neuroinflammatory response after stroke in a time-dependent manner.
Methods
The Endothelin-1 (Et-1) model was used to elicit a transient focal cerebral ischemia in male Wistar rats. In this model, the core and penumbra of the insult are represented by the striatum and the cortex respectively. We assessed the effects of 2 hours of hypothermia, started 20 minutes after Et-1 injection on neurological outcome and infarct volume. Furthermore, pro- and anti-inflammatory cytokine expression was determined using ELISA. Microgliosis and astrogliosis were investigated using CD-68 and GFAP staining respectively. All parameters were determined 8, 24, 72 hours and 1 week after the administration of Et-1.
Results
Et-1 infusion caused neurological deficit and a reproducible infarct size which increased up to 3 days after the insult. Both parameters were significantly reduced by hypothermia. The strongest reduction in infarct volume with hypothermia, at 3 days, corresponded with increased microglial activation. Reducing the brain temperature affected the stroke induced increase in interleukin-1β and tumor necrosis factor α in the striatum, 8 hours after its induction, but not at later time points. Transforming growth factor β increased as a function of time after the Et-1-induced insult and was not influenced by cooling. Hypothermia reduced astrogliosis at 1 and 3 days after stroke onset.
Conclusions
The beneficial effects of hypothermia after stroke on infarct volume and functional outcome coincide with a time-dependent modulation of the cytokine expression and gliosis.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference51 articles.
1. Durukan A, Tatlisumak T: Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007, 87: 179-197. 10.1016/j.pbb.2007.04.015.
2. Ginsberg MD: Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology. 2008, 55: 363-389. 10.1016/j.neuropharm.2007.12.007.
3. Candelario-Jalil E: Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs. 2009, 10: 644-654.
4. Zhao H, Steinberg GK, Sapolsky RM: General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab. 2007, 27: 1879-1894. 10.1038/sj.jcbfm.9600540.
5. Tang XN, Liu L, Yenari MA: Combination therapy with hypothermia for treatment of cerebral ischemia. J Neurotrauma. 2009, 26: 325-331. 10.1089/neu.2008.0594.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献