Author:
Lee John D,Kamaruzaman Nur A,Fung Jenny NT,Taylor Stephen M,Turner Bradley J,Atkin Julie D,Woodruff Trent M,Noakes Peter G
Abstract
Abstract
Background
Components of the innate immune complement system have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS); however, a comprehensive examination of complement expression in this disease has not been performed. This study therefore aimed to determine the expression of complement components (C1qB, C4, factor B, C3/C3b, C5 and CD88) and regulators (CD55 and CD59a) in the lumbar spinal cord of hSOD1G93A mice during defined disease stages.
Methods
hSOD1G93A and wild-type mice were examined at four different ages of disease progression. mRNA and protein expression of complement components and regulators were examined using quantitative PCR, western blotting and ELISA. Localisation of complement components within lumbar spinal cord was investigated using immunohistochemistry. Statistical differences between hSOD1G93A and wild-type mice were analysed using a two-tailed t-test at each stage of disease progression.
Results
We found several early complement factors increased as disease progressed, whilst complement regulators decreased; suggesting overall increased complement activation through the classical or alternative pathways in hSOD1G93A mice. CD88 was also increased during disease progression, with immunolocalisation demonstrating expression on motor neurons and increasing expression on microglia surrounding the regions of motor neuron death.
Conclusions
These results indicate that local complement activation and increased expression of CD88 may contribute to motor neuron death and ALS pathology in the hSOD1G93A mouse. Hence, reducing complement-induced inflammation could be an important therapeutic strategy to treat ALS.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference56 articles.
1. Bruijn LI, Miller TM, Cleveland DW: Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci. 2004, 27: 723-749. 10.1146/annurev.neuro.27.070203.144244.
2. Cozzolino M, Ferri A, Carri MT: Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal. 2008, 10: 405-443. 10.1089/ars.2007.1760.
3. Woodruff TM, Costantini KJ, Taylor SM, Noakes PG: Role of complement in motor neuron disease: animal models and therapeutic potential of complement inhibitors. Adv Exp Med Biol. 2008, 632: 143-158.
4. Lee JD, Lee JY, Taylor SM, Noakes PG, Woodruff TM: Innate Immunity in ALS. Amyotrophic Lateral Sclerosis. Edited by: Maurer MH. 2012, Croatia: InTech, 393-412.
5. Almer G, Guegan C, Teismann P, Naini A, Rosoklija G, Hays AP, Chen C, Przedborski S: Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol. 2001, 49: 176-185. 10.1002/1531-8249(20010201)49:2<176::AID-ANA37>3.0.CO;2-X.
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献