Dysregulation of the complement cascade in the hSOD1G93Atransgenic mouse model of amyotrophic lateral sclerosis

Author:

Lee John D,Kamaruzaman Nur A,Fung Jenny NT,Taylor Stephen M,Turner Bradley J,Atkin Julie D,Woodruff Trent M,Noakes Peter G

Abstract

Abstract Background Components of the innate immune complement system have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS); however, a comprehensive examination of complement expression in this disease has not been performed. This study therefore aimed to determine the expression of complement components (C1qB, C4, factor B, C3/C3b, C5 and CD88) and regulators (CD55 and CD59a) in the lumbar spinal cord of hSOD1G93A mice during defined disease stages. Methods hSOD1G93A and wild-type mice were examined at four different ages of disease progression. mRNA and protein expression of complement components and regulators were examined using quantitative PCR, western blotting and ELISA. Localisation of complement components within lumbar spinal cord was investigated using immunohistochemistry. Statistical differences between hSOD1G93A and wild-type mice were analysed using a two-tailed t-test at each stage of disease progression. Results We found several early complement factors increased as disease progressed, whilst complement regulators decreased; suggesting overall increased complement activation through the classical or alternative pathways in hSOD1G93A mice. CD88 was also increased during disease progression, with immunolocalisation demonstrating expression on motor neurons and increasing expression on microglia surrounding the regions of motor neuron death. Conclusions These results indicate that local complement activation and increased expression of CD88 may contribute to motor neuron death and ALS pathology in the hSOD1G93A mouse. Hence, reducing complement-induced inflammation could be an important therapeutic strategy to treat ALS.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3