Author:
Stokes Jennifer A,Cheung Jonathan,Eddinger Kelly,Corr Maripat,Yaksh Tony L
Abstract
Abstract
Background
Spinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.
Methods
L5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2
-/-
Tlr3
-/-
, Tlr4
-/-
, Tlr5
-/-
, Myd88
-/-
, Trif
lps2
, Myd88/Trif
lps2
, Tnf
-/-
, and Ifnar1
-/-
mice. We also examined L5 ligation in Tlr4
-/-
female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.
Results
In WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4
-/-
mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.
Conclusions
These observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献