Fibrillar beta-amyloid peptide Aβ1–40 activates microglial proliferation via stimulating TNF-α release and H2O2 derived from NADPH oxidase: a cell culture study

Author:

Jekabsone Aiste,Mander Palwinder K,Tickler Anna,Sharpe Martyn,Brown Guy C

Abstract

Abstract Background Alzheimer's disease is characterized by the accumulation of neuritic plaques, containing activated microglia and β-amyloid peptides (Aβ). Fibrillar Aβ can activate microglia, resulting in production of toxic and inflammatory mediators like hydrogen peroxide, nitric oxide, and cytokines. We have recently found that microglial proliferation is regulated by hydrogen peroxide derived from NADPH oxidase. Thus, in this study, we investigated whether Aβ can stimulate microglial proliferation and cytokine production via activation of NADPH oxidase to produce hydrogen peroxide. Methods Primary mixed glial cultures were prepared from the cerebral cortices of 7-day-old Wistar rats. At confluency, microglial cells were isolated by tapping, replated, and treated either with or without Aβ. Hydrogen peroxide production by cells was measured with Amplex Red and peroxidase. Microglial proliferation was assessed under a microscope 0, 24 and 48 hours after plating. TNF-α and IL-1β levels in the culture medium were assessed by ELISA. Results We found that 1 μM fibrillar (but not soluble) Aβ1–40 peptide induced microglial proliferation and caused release of hydrogen peroxide, TNF-α and IL-1β from microglial cells. Proliferation was prevented by the NADPH oxidase inhibitor apocynin (10 μM), by the hydrogen peroxide-degrading enzyme catalase (60 U/ml), and by its mimetics EUK-8 and EUK-134 (20 μM); as well as by an antibody against TNF-α and by a soluble TNF receptor inhibitor. Production of TNF-α and IL-1β, measured after 24 hours of Aβ treatment, was also prevented by apocynin, catalase and EUKs, but the early release (measured after 1 hour of Aβ treatment) of TNF-α was insensitive to apocynin or catalase. Conclusion These results indicate that Aβ1–40-induced microglial proliferation is mediated both by microglial release of TNF-α and production of hydrogen peroxide from NADPH oxidase. This suggests that TNF-α and NADPH oxidase, and its products, are potential targets to prevent Aβ-induced inflammatory neurodegeneration.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3