Author:
Zolini Guilherme Pimenta,Lima Graciela Kunrath,Lucinda Natália,Silva Mariana Almeida,Dias Marcela França,Pessoa Natália Lima,Coura Bruna Pizziolo,Cartelle Christiane Teixeira,Arantes Rosa Maria Esteves,Kroon Erna Geessien,Campos Marco Antônio
Abstract
Abstract
Background
Herpes simplex 1 (HSV-1) causes various human clinical manifestations, ranging from simple cold sores to encephalitis. Innate immune cells recognize pathogens through Toll-like receptors (TLRs), thus initiating the immune response. Previously, we demonstrated that the immune response against HSV-1 is dependent on TLR2 and TLR9 expression and on IFN gamma production in the trigeminal ganglia (TG) of infected mice. In this work, we further investigated the cells, molecules, and mechanisms of HSV-1 infection control, especially those that are TLR-dependent.
Methods
C57BL/6 wild-type (WT), TLR2−/−, TLR9−/−, and TLR2/9−/− mice were intranasally infected with HSV-1. On the viral peak day, the TG and brains were collected from mice and TLR expression was measured in the TG and brain and inducible nitric oxide synthase (iNOS) expression was measured in the TG by real-time PCR. Immunofluorescence assays were performed in mice TG to detect iNOS production by F4/80+ cells. Intraperitoneal macrophages nitric oxide (NO) production was evaluated by the Griess assay. WT, CD8−/−, RAG−/−, and iNOS−/− mice were intranasally infected in a survival assay, and their cytokine expression was measured in the TG by real-time PCR.
Results
Infected WT mice exhibited significantly increased TLR expression, compared with their respective controls, in the TG but not in the brain. TLR-deficient mice had moderately increased TLR expression in the TG and brain in compare with the non-infected animals. iNOS expression in the WT infected mice TG was higher than in the other groups with increased production by macrophages in the WT infected mice, which did not occur in the TLR2/9−/− mice. Additionally, the intraperitoneal macrophages of the WT mice had a higher production of NO compared with those of the TLR-deficient mice. The CD8−/−, RAG−/−, and iNOS−/− mice had 100% mortality after the HSV-1 infection compared with 10% of the WT mice. Cytokines were overexpressed in the iNOS−/− infected mice, while the RAG−/− mice were nearly unresponsive to the virus.
Conclusion
TLRs efficiently orchestrate the innate immune cells, eliciting macrophage response (with NO production by the macrophages), thereby controlling the HSV-1 infection through the immune response in the TG of mice.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference46 articles.
1. Roizman B, Knipe DM, Whitley RJ: Herpes Simplex Viruses. Fields Virology. Edited by: Knipe DM, Howley RM. 2007, Pennsylvania, PA: Lippincott Williams & Wilkins, 2502-2601. 5
2. Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E: The order Herpesvirales. Arch Virol. 2009, 154: 171-177.
3. Schmutzhard E: Viral infections of the CNS with special emphasis on herpes simplex infections. J Neurol. 2001, 248: 469-477.
4. Arduino PG, Porter SR: Herpes simplex virus type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med. 2008, 37: 107-121.
5. Preston CM: Repression of viral transcription during herpes simplex virus latency. J Gen Virol. 2000, 81: 1-19.