Author:
Liu Yuan,Hu Jun,Wu Jie,Zhu Chenlei,Hui Yujian,Han Yaping,Huang Zuhu,Ellsworth Kevin,Fan Weimin
Abstract
Abstract
Background
Although evidence suggests that the prevalence of Parkinson’s disease (PD) is lower in smokers than in non-smokers, the mechanisms of nicotine-induced neuroprotection remain unclear. Stimulation of the α7 nicotinic acetylcholine receptor (α7-nAChR) seems to be a crucial mechanism underlying the anti-inflammatory potential of cholinergic agonists in immune cells, including astrocytes, and inhibition of astrocyte activation has been proposed as a novel strategy for the treatment of neurodegenerative disorders such as PD. The objective of the present study was to determine whether nicotine-induced neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model occurs via α7-nAChR-mediated inhibition of astrocytes.
Methods
Both in vivo (MPTP) and in vitro (1-methyl-4-phenylpyridinium ion (MPP+) and lipopolysaccharide (LPS)) models of PD were used to investigate the role(s) of and possible mechanism(s) by which α7-nAChRs protect against dopaminergic neuron loss. Multiple experimental approaches, including behavioral tests, immunochemistry, and stereology experiments, astrocyte cell cultures, reverse transcriptase PCR, laser scanning confocal microscopy, tumor necrosis factor (TNF)-α assays, and western blotting, were used to elucidate the mechanisms of the α7-nAChR-mediated neuroprotection.
Results
Systemic administration of nicotine alleviated MPTP-induced behavioral symptoms, improved motor coordination, and protected against dopaminergic neuron loss and the activation of astrocytes and microglia in the substantia nigra. The protective effects of nicotine were abolished by administration of the α7-nAChR-selective antagonist methyllycaconitine (MLA). In primary cultured mouse astrocytes, pretreatment with nicotine suppressed MPP+-induced or LPS-induced astrocyte activation, as evidenced by both decreased production of TNF-α and inhibition of extracellular regulated kinase1/2 (Erk1/2) and p38 activation in astrocytes, and these effects were also reversed by MLA.
Conclusion
Taken together, our results suggest that α7-nAChR-mediated inhibition of astrocyte activation is an important mechanism underlying the protective effects of nicotine.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference33 articles.
1. Jakowec MW, Petzinger GM: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of parkinson’s disease, with emphasis on mice and nonhuman primates.
Comp Med 2004, 54:497–513.
2. Farina C, Aloisi F, Meinl E: Astrocytes are active players in cerebral innate immunity.
Trends Immunol 2007, 28:138–145.
3. Hu J, Zhu C, Liu Y, Wang F, Huang Z, Fan W, Wu J: Dynamic alterations of gene expression of nicotinic acetylcholine receptor alpha7, alpha4 and beta2 subunits in an acute MPTP-lesioned mouse model.
Neurosci Lett 2011, 494:232–236.
4. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S: Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease.
Nat Med 1999, 5:1403–1409.
5. Fan Y, Kong H, Shi X, Sun X, Ding J, Wu J, Hu G: Hypersensitivity of aquaporin 4-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine and astrocytic modulation.
Neurobiol Aging 2008, 29:1226–1236.
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献