Reduction of Salmonella contamination on the surface of chicken skin using bacteriophage

Author:

Atterbury Robert JosephORCID,Gigante Adriano Marcelo,Rubio Lozano María de la Salud,Méndez Medina Ruben Danilo,Robinson Gareth,Alloush Habib,Barrow Paul Andrew,Allen Vivien Mary

Abstract

Abstract Background Enteric infections caused by Salmonella spp. remain a major public health burden worldwide. Chickens are known to be a major reservoir for this zoonotic pathogen. The presence of Salmonella in poultry farms and abattoirs is associated with financial costs of treatment and a serious risk to human health. The use of bacteriophages as a biocontrol is one possible intervention by which Salmonella colonization of chickens could be reduced. In a prior study, phages Eϕ151 and Tϕ7 significantly reduced broiler chicken caecal colonization by S. Enteritidis and S. Typhimurium respectively. Methods Salmonella-free Ross broiler chickens were orally infected with S. Enteritidis P125109 or S. Typhimurium 4/74. After 7 days of infection, the animals were euthanased, and 25cm2 sections of skin were collected. The skin samples were sprayed with a phage suspension of either Eϕ151 (S. Enteritidis), Tϕ7 phage suspension (S. Typhimurium) or SM buffer (Control). After incubation, the number of surviving Salmonellas was determined by direct plating and Most Probable Number (MPN). To determine the rate of reduction of Salmonella numbers on the skin surface, a bioluminescent S. Typhimurium DT104 strain was cultured, spread on sections of chicken breast skin, and after spraying with a Tϕ11 phage suspension, skin samples were monitored using photon counting for up to 24 h. Results The median levels of Salmonella reduction following phage treatment were 1.38 log10 MPN (Enteritidis) and 1.83 log10 MPN (Typhimurium) per skin section. Treatment reductions were significant when compared with Salmonella recovery from control skin sections treated with buffer (p < 0.0001). Additionally, significant reduction in light intensity was observed within 1 min of phage Tϕ11 spraying onto the skin contaminated with a bioluminescent Salmonella recombinant strain, compared with buffer-treated controls (p < 0.01), implying that some lysis of Salmonella was occurring on the skin surface. Conclusions The results of this study suggest that phages may be used on the surface of chicken skin as biocontrol agents against Salmonella infected broiler chicken carcasses. The rate of bioluminescence reduction shown by the recombinant Salmonella strain used supported the hypothesis that at least some of the reduction observed was due to lysis occurred on the skin surface.

Funder

Sixth Framework Programme

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Reference55 articles.

1. World Health Organization (WHO). Estimates of the global burden of foodborne diseases (foodborne disease burden epidemiology reference group 2007–2015). 2015. https://apps.who.int/iris/handle/10665/199350.

2. Centers for Disease Control (CDC). National enteric disease surveillance: salmonella annual report, 2016. 2018. https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf.

3. European Food Safety Authority (EFSA). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018;16:5500 https://www.ecdc.europa.eu/sites/default/files/documents/zoonoese-food-borne-outbreaks-surveillance-2017-updated.pdf.

4. United States Department of Agriculture (USDA). Cost estimates of foodborne illnesses. 2014. https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses.aspx5. Accessed 31 May 2020.

5. Foodborne Disease Active Surveillance Network 2015 Surveillance Report (Final Data). 2015. https://www.cdc.gov/foodnet/pdfs/FoodNet-Annual-Report-2015-508c.pdf. [Cited 2019 Feb 11].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3