Author:
Chi Ying Lin,Xie Yuan,Liu Shu Qing,Zhu Wu Yang
Abstract
Abstract
Background
Rabies is a widespread, fatal, infectious disease. Several antivirals against rabies virus (RABV) infection have been reported, but no approved, RABV-specific antiviral drugs that inhibit RABV infection in the clinic after symptom onset are available. Therefore, more effective drugs to reduce rabies fatalities are urgently needed. Bardoxolone methyl (CDDO-Me), an FDA-approved compound that has long been known as an antioxidant inflammatory modulator and one of the most potent nuclear factor erythroid-derived 2-like 2 (Nrf2) activators, protects myelin, axons, and CNS neurons by Nrf2 activation. Therefore, we investigated the potency of its anti-RABV activity in vitro.
Methods
The mouse neuroblastoma cell line Neuro2a (N2a) and three RABV strains of different virulence were used; the cytotoxicity and anti-RABV activity of CDDO-Me in N2a cells were evaluated by CCK-8 assay and direct fluorescent antibody (DFA) assay. Pathway activation in N2a cells infected with the RABV strains SC16, CVS-11 or CTN upon CDDO-Me treatment was evaluated by western blotting (WB) and DFA assay.
Results
CDDO-Me significantly inhibited infection of the three RABV strains of differing virulence (SC16, CVS-11 and CTN) in N2a cells. We also examined whether CDDO-Me activates the Nrf2-associated pathway upon infection with RABV strains of differing virulence. Nrf2, phosphorylated sequestosome (SQSTM1), SQSTM1, hemoglobin oxygenase (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) expression in N2a cells increased to varying degrees with CDDO-Me treatment, accompanied by Kelch-like ECH-associated protein 1 (Keap1) dissociation, upon infection with SC16, CVS-11 or CTN. The activation of SQSTM1 phosphorylation was significantly associated with the degradation of Keap-1 in CDDO-Me-treated N2a cells upon RABV infection. Furthermore, N2a cells pretreated with the Nrf2-specific inhibitor ATRA showed a significant decrease in HO-1 and NQO1 expression and a decrease in the anti-RABV efficacy of CDDO-Me. These inhibitory effects were observed upon infection with three RABV strains of differing virulence.
Conclusion
CDDO-Me inhibited RABV infection via Nrf2 activation, promoting a cytoprotective defense response in N2a cells. Our study provides a therapeutic strategy for RABV inhibition and neuroprotection during viral infection.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference67 articles.
1. World Health O (2013): WHO Expert Consultation on Rabies. Second report. World Health Organ Tech Rep Ser, pp 1–139
2. Rupprecht CE. Rhabdoviruses: Rabies Virus. In: Baron S, editor. Medical Microbiology. 4th ed. TX: Galveston; 1996.
3. Miyamoto K, Matsumoto S. Comparative studies between pathogenesis of street and fixed rabies infection. J Exp Med. 1967;125:447–56.
4. Huang Y, Jiao S, Tao X, Tang Q, Jiao W, Xiao J, Xu X, Zhang Y, Liang G, Wang H. Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection. J Neuroinflammation. 2014;11:146.
5. Appolinario CM, Jackson AC. Antiviral therapy for human rabies. Antivir Ther. 2015;20:1–10.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献