COVID-19 epidemic in New York City: development of an age group-specific mathematical model to predict the outcome of various vaccination strategies

Author:

Li Miaolei,Zu JianORCID,Zhang Yue,Ma Le,Shen Mingwang,Li Zongfang,Ji FanpuORCID

Abstract

Abstract Background Since December 14, 2020, New York City (NYC) has started the first batch of COVID-19 vaccines. However, the shortage of vaccines is currently an inevitable problem. Therefore, optimizing the age-specific COVID-19 vaccination is an important issue that needs to be addressed as a priority. Objective Combined with the reported COVID-19 data in NYC, this study aimed to construct a mathematical model with five age groups to estimate the impact of age-specific vaccination on reducing the prevalence of COVID-19. Methods We proposed an age-structured mathematical model and estimated the unknown parameters based on the method of Markov Chain Monte Carlo (MCMC). We also calibrated our model by using three different types of reported COVID-19 data in NYC. Moreover, we evaluated the reduced cumulative number of deaths and new infections with different vaccine allocation strategies. Results Compared with the current vaccination strategy in NYC, if we gradually increased the vaccination coverage rate for only one age groups from March 1, 2021 such that the vaccination coverage rate would reach to 40% by June 1, 2021, then as of June 1, 2021, the cumulative deaths in the 75–100 age group would be reduced the most, about 72 fewer deaths per increased 100,000 vaccinated individuals, and the cumulative new infections in the 0–17 age group would be reduced the most, about 21,591 fewer new infections per increased 100,000 vaccinated individuals. If we gradually increased the vaccination coverage rate for two age groups from March 1, 2021 such that the vaccination coverage rate would reach to 40% by June 1, 2021, then as of June 1, 2021, the cumulative deaths in the 65–100 age group would be reduced the most, about 36 fewer deaths per increased 100,000 vaccinated individuals, and the cumulative new infections in the 0–44 age group would be reduced the most, about 17,515 fewer new infections per increased 100,000 vaccinated individuals. In addition, if we had an additional 100,000 doses of vaccine for 0–17 and 75–100 age groups as of June 1, 2021, then the allocation of 80% to the 0–17 age group and 20% to the 75–100 age group would reduce the maximum numbers of new infections and deaths simultaneously in NYC. Conclusions The COVID-19 burden including deaths and new infections would decrease with increasing vaccination coverage rate. Priority vaccination to the elderly and adolescents would minimize both deaths and new infections.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3