Author:
Yu Lei,Pan Jun,Cao Guangli,Jiang Mengsheng,Zhang Yunshan,Zhu Min,Liang Zi,Zhang Xing,Hu Xiaolong,Xue Renyu,Gong Chengliang
Abstract
Abstract
Background
The protective efficacy of avian influenza virus (AIV) vaccines is unsatisfactory due to the presence of various serotypes generated by genetic reassortment. Thus, immunization with a polyantigen chimeric epitope vaccine may be an effective strategy for protecting poultry from infection with different AIV subtypes.
Methods
Baculovirus has recently emerged as a novel and attractive gene delivery vehicle for animal cells. In the present study, a recombinant baculovirus BmNPV-CMV/THB-P10/CTLT containing a fused codon-optimized sequence (CTLT) of T lymphocyte epitopes from H1HA, H9HA, and H7HA AIV subtypes, and another fused codon-optimized sequence (THB) of Th and B cell epitopes from H1HA, H9HA, and H7HA AIV subtypes, driven by a baculovirus P10 promoter and cytomegalovirus CMV promoter, respectively, was constructed.
Results
Western blotting and cellular immunofluorescence demonstrated that the CTLT (THB) can be expressed in rBac-CMV/THB-P10/CTLT-infected silkworm cells (mammalian HEK293T cells). Furthermore, the recombinant virus, rBac-CMV-THB-CTLT, was used to immunize both chickens and mice.
Conclusions
The results of an indirect ELISA, immunohistochemistry, and T lymphocyte proliferation assay indicated that specific humoral and cellular responses were detected in both chicken and mice. These results suggest that rBac-CMV/THB-P10/CTLT can be developed as a potential vaccine against different AIV subtypes.
Funder
National Natural Science Foundation of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献