VLPs containing stalk domain and ectodomain of matrix protein 2 of influenza induce protection in mice

Author:

Shi Lili,Long Ying,Zhu Yanyan,Dong Jingjian,Chen Yan,Feng Hao,Sun Xianliang

Abstract

Abstract Background As a result of antigenic drift, current influenza vaccines provide limited protection against circulating influenza viruses, and vaccines with broad cross protection are urgently needed. Hemagglutinin stalk domain and ectodomain of matrix protein 2 are highly conserved among influenza viruses and have great potential for use as a universal vaccine. Methods In this study, we co-expressed the stalk domain and M2e on the surface of cell membranes and generated chimeric and standard virus-like particles of influenza to improve antigen immunogenicity. We subsequently immunized BALB/c mice through intranasal and intramuscular routes. Results Data obtained demonstrated that vaccination with VLPs elicited high levels of serum-specific IgG (approximately 30-fold higher than that obtained with soluble protein), induced increased ADCC activity to the influenza virus, and enhanced T cell as well as mucosal immune responses. Furthermore, mice immunized by VLP had elevated level of mucosal HA and 4M2e specific IgA titers and cytokine production as compared to mice immunized with soluble protein. Additionally, the VLP-immunized group exhibited long-lasting humoral antibody responses and effectively reduced lung viral titers after the challenge. Compared to the 4M2e-VLP and mHA-VLP groups, the chimeric VLP group experienced cross-protection against the lethal challenge with homologous and heterologous viruses. The stalk domain specific antibody conferred better protection than the 4M2e specific antibody. Conclusion Our findings demonstrated that the chimeric VLPs anchored with the stalk domain and M2e showed efficacy in reducing viral loads after the influenza virus challenge in the mice model. This antibody can be used in humans to broadly protect against a variety of influenza virus subtypes. The chimeric VLPs represent a novel approach to increase antigen immunogenicity and are promising candidates for a universal influenza vaccine.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3