Intranasal delivery of plasmids expressing bovine herpesvirus 1 gB/gC/gD proteins by polyethyleneimine magnetic beads activates long-term immune responses in mice

Author:

Liu Xing-Bo,Yu Guo-Wei,Gao Xin-Yu,Huang Jin-Long,Qin Li-Ting,Ni Hong-Bo,Lyu ChuangORCID

Abstract

Abstract Background DNA vaccine is one of the research hotspots in veterinary vaccine development. Several advantages, such as cost-effectiveness, ease of design and production, good biocompatibility of plasmid DNA, attractive biosafety, and DNA stability, are found in DNA vaccines. Methods In this study, the plasmids expressing bovine herpesvirus 1 (BoHV-1) gB, gC, and gD proteins were mixed at the same mass ratio and adsorbed polyethyleneimine (PEI) magnetic beads with a diameter of 50 nm. Further, the plasmid and PEI magnetic bead polymers were packaged into double carboxyl polyethylene glycol (PEG) 600 to use as a DNA vaccine. The prepared DNA vaccine was employed to vaccinate mice via the intranasal route. The immune responses were evaluated in mice after vaccination. Results The expression of viral proteins could be largely detected in the lung and rarely in the spleen of mice subjected to a vaccination. The examination of biochemical indicators, anal temperature, and histology indicated that the DNA vaccine was safe in vivo. However, short-time toxicity was observed. The total antibody detected with ELISA in vaccinated mice showed a higher level than PBS, DNA, PEI + DNA, and PBS groups. The antibody level was significantly elevated at the 15th week and started to decrease since the 17th week. The neutralizing antibody titer was significantly higher in DNA vaccine than naked DNA vaccinated animals. The total IgA level was much greater in the DNA vaccine group compared to other component vaccinated groups. The examination of cellular cytokines and the percentage of CD4/CD8 indicated that the prepared DNA vaccine induced a strong cellular immunity. Conclusion The mixed application of plasmids expressing BoHV-1 gB/gC/gD proteins by nano-carrier through intranasal route could effectively activate long-term humoral, cellular, and mucosal immune responses at high levels in mice. These data indicate PEI magnetic beads combining with PEG600 are an efficient vector for plasmid DNA to deliver intranasally as a DNA vaccine candidate.

Funder

The Special funds for the Guidance of Central Government on local Science and Technology development

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3