Author:
Sarkar Md. Murshed Hasan,Rahman M. Shaminur,Islam M. Rafiul,Rahman Arafat,Islam Md. Shariful,Banu Tanjina Akhtar,Akter Shahina,Goswami Barna,Jahan Iffat,Habib Md. Ahashan,Uddin Mohammad Mohi,Mia Md. Zakaria,Miah Md. Ibrahim,Shaikh Aftab Ali,Khan Md. Salim
Abstract
Abstract
Background
The next-generation sequencing (NGS) technology facilitates in-depth study of host-pathogen metatranscriptome. We, therefore, implicated phylodynamic and transcriptomic approaches through NGS technology to know/understand the dengue virus (DENV) origin and host response with dengue fever.
Methods
In this study, blood serum RNA was extracted from 21 dengue patients and 3 healthy individuals. Total transcriptomic data were analyzed for phylogenetic, phylodynamic, differential express gene (DEG), and gene ontology (GO) using respective bioinformatics tools.
Results
The viral genome sequence revealed dengue viral genome size ranges 10647 to 10707 nucleotide. Phylogenetic and phylodynamic analysis showed that the 2021 epidemic isolates were DENV-3 genotype-I and maintained as a new clade in compared to 2019 epidemic. Transcriptome analysis showed a total of 2686 genes were DEG in dengue patients compared to control with a q-value < 0.05. DESeq2 plot counts function of the top 24 genes with the smallest q-values of differential gene expression of RNA-seq data showed that 11 genes were upregulated, whereas 13 genes were downregulated. GO analysis showed a significant upregulation (p = < 0.001) in a process of multicellular organismal, nervous system, sensory perception of chemical stimulus, and G protein-coupled receptor signaling pathways in the dengue patients. However, there were a significant downregulation (p = < 0.001) of intracellular component, cellular anatomical entity, and protein-containing complex in dengue patients. Most importantly, there was a significant increase of a class of immunoregulatory proteins in dengue patients in compared to the controls, with increased GO of immune system process. In addition, upregulation of toll receptor (TLR) signaling pathways were found in dengue patients. These TLR pathways were particularly involved for the activation of innate system coupled with adaptive immune system that probably involved the rapid elimination of dengue virus infected cells. These differentially expressed genes could be further investigated for target based prophylactic interventions for dengue.
Conclusion
This is a first report describing DENV complete genomic features and differentially expressed genes in patients in Bangladesh. These genes may have diagnostic and therapeutic values for dengue infection. Continual genomic surveillance is required to further investigate the shift in dominant genotypes in relation to viral pathogenesis.
Funder
Bangladesh Council of Scientific and Industrial Research
Ministry of Education, Government of the People’s Republic of Bangladesh
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference82 articles.
1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al. The global distribution and burden of dengue. Nature [Internet]. Nature Publishing Group; 2013;496:504–7. Available from: https://doi.org/10.1038/nature12060
2. Mahbubur Rahman KR, Siddque AK, Shereen Shoma AHMK, Ali KS. Ananda Nisaluk and RFB. First Outbreak of. Emerg Infect Dis. 2002;8:2000–2.
3. Aziz MM, Hasan KN, Hasanat MA, Siddiqui MA, Salimullah M, Chowdhury AK, et al. Predominance of the DEN-3 genotype during the recent dengue outbreak in Bangladesh. Southeast Asian J Trop Med Public Health. 2002;33:42–8.
4. Muraduzzaman AKM, Alam AN, Sultana S, Siddiqua M, Khan MH, Akram A et al. Circulating dengue virus serotypes in Bangladesh from 2013 to 2016. VirusDisease [Internet]. Springer India; 2018;29:303–7. Available from: https://doi.org/10.1007/s13337-018-0469-x
5. Suzuki K, Phadungsombat J, Nakayama EE, Saito A, Egawa A, Sato T et al. Genotype replacement of dengue virus type 3 and clade replacement of dengue virus type 2 genotype Cosmopolitan in Dhaka, Bangladesh in 2017.Infect Genet Evol. 2019;75.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献