Soluble factors in COVID-19 mRNA vaccine-induced myocarditis causes cardiomyoblast hypertrophy and cell injury: a case report

Author:

Paredes-Vazquez Jose Gildardo,Rubio-Infante Nestor,Lopez-de la Garza Hector,Brunck Marion E. G.,Guajardo-Lozano Jaime Alberto,Ramos Martin R.,Vazquez-Garza Eduardo,Torre-Amione Guillermo,Garcia-Rivas Gerardo,Jerjes-Sanchez Carlos

Abstract

Abstract Background Inflammation affecting the heart and surrounding tissues is a clinical condition recently reported following COVID-19 mRNA vaccination. Assessing trends of these events related to immunization will improve vaccine safety surveillance and best practices for forthcoming vaccine campaigns. However, the causality is unknown, and the mechanisms associated with cardiac myocarditis are not understood. Case presentation After the first dose, we reported an mRNA vaccine-induced perimyocarditis in a young patient with a history of recurrent myocardial inflammation episodes and progressive loss of cardiac performance. We tested this possible inflammatory cytokine-mediated cardiotoxicity after vaccination in the acute phase (ten days), and we found a significant elevation of MCP-1, IL-18, and IL-8 inflammatory mediators. Still, these cytokines decreased considerably at the recovery phase (42 days later). We used the cardiomyoblasts cell line to test the effect of serum on cell viability, observing that serum from the acute phase reduced the cell viability to 75%. We did not detect this toxicity in cells when we tested serum from the patient in the recovery phase. We also tested serum-induced hypertrophy, a phenomenon in myocarditis and heart failure. We found that acute phase-serum has hypertrophy effects, increasing 25% of the treated cardiac cells’ surface and significantly increasing B-type natriuretic peptide. However, we did not observe the hypertrophic effect in the recovery phase or sera from healthy controls. Conclusion Our results opened the possibility of the inflammatory cytokines or serum soluble mediators as key factors for vaccine-associated myocarditis. In this regard, identifying anti-inflammatory molecules that reduce inflammatory cytokines could help avoid vaccine-induced myocardial inflammation.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3