Preparation of the luciferase-labeled antibody for improving the detection sensitivity of viral antigen

Author:

Tang Ying,Li Yuchang,Zhang Sen,Li Jing,Hu Yi,Yang Wenguang,Chen Yuehong,Qin Chengfeng,Jiang Tao,Kang Xiaoping

Abstract

AbstractBackgroundViral antigen detection test is the most common method used to detect viruses in the field rapidly. However, due to the low sensitivity, it can only be used as an auxiliary diagnosis method for virus infection. Improving sensitivity is crucial for developing more accurate viral antigen tests. Nano luciferase (Nluc) is a sensitive reporter that has not been used in virus detection.ResultsIn this study, we produced an intracellularly Nluc labeled detection antibody (Nluc-ch2C5) and evaluated its ability to improve the detection sensitivity of respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens. Compared with the traditional horse-radish peroxidase (HRP) labeled antibody (HRP-ch2C5), Nluc-ch2C5 was 41 times more sensitive for inactivated SARS-CoV-2 virus by sandwich chemiluminescence ELISA. Then we applied Nluc-ch2C5 to establish an automatic magnet chemiluminescence immune assay (AMCA) for the SARS-CoV-2 viral spike protein, the limit of detection was 68 pfu/reaction. The clinical sensitivity and specificity reached 75% (24/32) and 100% (48/48) using 32 PCR-positive and 48 PCR-negative swab samples for clinical evaluation, which is more sensitive than the commercial ELSA kit and colloid gold strip kit.ConclusionsHere, monoclonal antibody ch2C5 served as a model antibody and the SARS-CoV-2 served as a model pathogen. The Nluc labeled detecting antibody (Nluc-ch2C5) significantly improved the detection sensitivity of SARS-CoV-2 antigen. This labeling principle applies to other viral infections, so this labeling and test format could be expected to play an important role in detecting other virus antigens.

Funder

Project plan of the Beijing Science and Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3