Identification of a neutralizing linear epitope within the VP1 protein of coxsackievirus A10

Author:

Zhu Hanyu,Liu Xin,Wu Yue,He Yunyi,Zheng Huanying,Liu Hongbo,Liu Qiliang

Abstract

Abstract Background Coxsackievirus A10 (CV-A10) is a leading cause of hand, foot, and mouth disease (HFMD). It is necessary to identify neutralizing epitopes to investigate and develop an epitope-based vaccine against CV-A10. The viral protein VP1 is the immunodominant capsid protein and contains the critical neutralizing epitope. However, neutralizing epitopes within VP1 protein of CV-A10 have not been well characterized. Methods Bioinformatics techniques were applied to predict linear epitopes on the CV-A10 VP1 protein. The advanced structural features of epitopes were analyzed by three-dimensional (3D) modeling. The anticipated epitope peptides were synthesized and used to immunize mice as antigens. ELISA and micro-neutralization assay were used to determine the specific IgG antibody and neutralizing antibody titers. The protective efficacy of the epitope peptides in vivo was evaluated using a passive immunization/challenge assay. Results Three linear epitopes (EP3, EP4, and EP5) were predicted on CV-A10 VP1, all spatially exposed on the capsid surface, and exhibited adequate immunogenicity. However, only EP4, corresponding to residues 162–176 of VP1, demonstrated potent neutralization against CV-A10. To determine the neutralizing capacity of EP4 further, EP4 double-peptide was synthesized and injected into mice. The mean neutralizing antibody titer of the anti-EP4 double-peptide sera was 1:50.79, which provided 40% protection against lethal infection with CV-A10 in neonatal mice. In addition, sequence and advanced structural analysis revealed that EP4 was highly conserved among representative strains of CV-A10 and localized in the EF loop region of VP1, like EV-A71 SP55 or CV-A16 PEP55. Conclusions These data demonstrate that EP4 is a specific linear neutralizing epitope on CV-A10 VP1. Its protective efficacy can be enhanced by increasing its copy number, which will be the foundation for developing a CV-A10 epitope-based vaccine.

Funder

National Natural Science Foundation of China

Appropriate Health Technology Promotion Project of Guangxi Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3