Author:
Zhu Tingfan,Qian Jinhan,Shen Zijun,Shao Hongxia,Qian Kun,Jin Wenjie,Qin Aijian
Abstract
Abstract
Background
Porcine epidemic diarrhea virus (PEDV) is an α-coronavirus that causes highly contagious intestinal infectious disease, involving clinically characterized by diarrhea, dehydration, vomiting, and high mortality to suckling piglets. As a strategy for antiviral therapy, artificial microRNA (amiRNA) mediated suppression of viral replication has recently become increasingly important. In this study, we evaluated the advantages of using an amiRNA vector against PEDV.
Methods
In this study, we evaluated the advantages of using an amiRNA vector against PEDV. We designed two single amiRNA sequences for different conserved sequences of the PEDV S and N genes, and tested their inhibitory effects on PEDV in Vero cells.
Results
It was obvious from the CCK-8 results that the transient transfection of amiRNA was non-toxic to the cells. In addition, our results showed that the transient expression of two amiRNAs (amiRNA-349 and amiRNA-1447) significantly reduced the expression of viral RNA and protein in the cells. The TCID50 results showed that the release of virus particles into the culture supernatant was significantly reduced, with an effect as high as 90%. To avoid virus mutation escape, the above two single amiRNA sequences were tandem in this study (amiRNA-349 + 1447), enabling a single microRNA to be expressed simultaneously. The real-time PCR and Western blot results showed that the inhibitory effect was significantly enhanced in each of the different time periods. The TCID50 results showed that the release of virus particles in the culture supernatant was significantly reduced at the different time periods.
Conclusions
In summary, these results suggest that an RNAi based on amiRNA targeting the conserved region of the virus is an effective method to improve PEDV nucleic acid inhibitors and provide a novel treatment strategy for PEDV infection.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献