Author:
Fischer Kerstin,Topallar Selin,Kraatz Franziska,Groschup Martin H.,Diederich Sandra
Abstract
Abstract
Background
N-linked glycans on viral glycoproteins have been shown to be important for protein expression, processing and intracellular transport. The fusion glycoprotein F of Cedar virus (CedV) contains six potential N-glycosylation sites.
Findings
To investigate their impact on cell surface transport, proteolytic cleavage and biological activity, we disrupted the consensus sequences by conservative mutations (Asn to Gln) and found that five of the six potential N-glycosylation sites are actually utilized. The individual removal of N-glycan g1 (N66), g2 (N79) and g3 (N98) in the CedV F2 subunit had no or only little effect on cell surface transport, proteolytic cleavage and fusion activity of CedV F. Interestingly, removal of N-linked glycan g6 (N463) in the F1 subunit resulted in reduced cell surface expression but slightly increased fusogenicity upon co-expression with the CedV receptor-binding protein G. Most prominent effects however were observed for the disruption of N-glycosylation motif g4 (N413), which significantly impaired the transport of CedV F to the cell surface, thereby also affecting proteolytic cleavage and fusion activity.
Conclusions
Our findings indicate that the individual N-linked modifications, with the exception of glycan g4, are dispensable for processing of CedV F protein in transfection experiments. However, removal of g4 led to a phenotype that was strongly impaired concerning cell surface expression and proteolytic activation.
Funder
Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献