A hSCARB2-transgenic mouse model for Coxsackievirus A16 pathogenesis

Author:

Chen Yanli,Li Heng,Yang Jinxi,Zheng Huiwen,Guo Lei,Li Weiyu,Yang Zening,Song Jie,Liu LongdingORCID

Abstract

Abstract Background Coxsackievirus A16 (CA16) is one of the neurotropic pathogen that has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD), but its pathogenesis is not yet clear. The limited host range of CA16 make the establishment of a suitable animal model that can recapitulate the neurological pathology observed in human HFMD more difficult. Because the human scavenger receptor class B, member 2 (hSCARB2) is a cellular receptor for CA16, we used transgenic mice bearing human SCARB2 and nasally infected them with CA16 to study the pathogenicity of the virus. Methods Coxsackievirus A16 was administered by intranasal instillation to groups of hSCARB2 transgenic mice and clinical signs were observed. Sampled at different time-points to document and characterize the mode of viral dissemination, pathological change and immune response of CA16 infection. Results Weight loss and virus replication in lung and brain were observed in hSCARB2 mice infected with CA16, indicating that these animals could model the neural infection process. Viral antigens were observed in the alveolar epithelia and brainstem cells. The typical histopathology was interstitial pneumonia with infiltration of significant lymphocytes into the alveolar interstitial in lung and diffuse punctate hemorrhages in the capillaries of the brainstem. In addition, we detected the expression levels of inflammatory cytokines and detected high levels of interleukin IL-1β, IL-6, IL-18, and IFN-γ in nasal mucosa, lungs and brain tissues. Conclusions The hSCARB2-transgenic mice can be productively infected with CA16 via respiratory route and exhibited a clear tropism to lung and brain tissues, which can serve as a model to investigate the pathogenesis of CA16 associated respiratory and neurological disease.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

the CAMS Innovation Fund for Medical Sciences

National Natural Sciences Foundations of China

Fundamental Research Funds for the Central Universities and PUMC Youth Fund

Yunnan Fundamental Research Projects

Medical Reserve Talents of Yunnan Province Health and Family Planning

Top young talents of Yunnan province ten thousand talents plan

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3