Enhanced synergistic antitumor effect of a DNA vaccine with anticancer cytokine, MDA-7/IL-24, and immune checkpoint blockade

Author:

Miri Seyed Mohammad,Pourhossein Behzad,Hosseini Seyed Younes,Keshavarz Mohsen,Shahmahmoodi Shohreh,Zolfaghari Mohammad Reza,Mohebbi Seyed Reza,Gorji Ali,Ghaemi AmirORCID

Abstract

Abstract Background MDA-7/IL-24 cytokine has shown potent antitumor properties in various types of cancer without exerting any significant toxicity on healthy cells. It has also been proved to encompass pro-immune Th1 cytokine-like behavior. Several E7 DNA vaccines have developed against human papillomavirus (HPV)-related cervical cancer. However, the restricted immunogenicity has limited their clinical applications individually. To address this deficiency, we investigated whether combining the E7 DNA vaccine with MDA-7/IL-24 as an adjuvant would elicit efficient antitumor responses in tumor-bearing mouse models. Next, we evaluated how suppression of immunosuppressive IL-10 cytokine would enhance the outcome of our candidate adjuvant vaccine. Methods For this purpose, tumor-bearing mice received either E7 DNA vaccine, MDA-7/IL-24 cytokine or combination of E7 vaccine with MDA-7/IL-24 adjuvant one week after tumor challenge and boosted two times with one-week interval. IL-10 blockade was performed by injection of anti-IL-10 mAb before each immunization. One week after the last immunization, mice were sacrificed and the treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, the condition of tumors was monitored every two days for six weeks intervals from week 2 on, and the tumor volume was measured and compared within different groups. Results A highly significant synergistic relationship was observed between the E7 DNA vaccine and the MDA-7/IL-24 cytokine against HPV-16+ cervical cancer models. An increase in proliferation of lymphocytes, cytotoxicity of CD8+ T cells, the level of Th1 cytokines (IFN-γ, TNF-α) and IL-4, the level of apoptotic markers (TRAIL and caspase-9), and a decrease in the level of immunosuppressive IL-10 cytokine, together with the control of tumor growth and the induction of tumor regression, all prove the efficacy of adjuvant E7&IL-24 vaccine when compared to their individual administration. Surprisingly, vaccination with the DNA E7&IL-24 significantly reduced the population of Regulatory T cells (Treg) in the spleen of immunized mice compared to sole administration and control groups. Moreover, IL-10 blockade enhanced the effect of the co-administration by eliciting higher levels of IFN-γ and caspase-9, reducing Il-10 secretion and provoking the regression of tumor size. Conclusion The synergy between the E7 DNA vaccine and MDA-7/IL-24 suggests that DNA vaccines’ low immunogenicity can be effectively addressed by coupling them with an immunoregulatory agent. Moreover, IL-10 blockade can be considered a complementary treatment to improve the outcome of conventional or novel cancer therapies.

Funder

National Institute for Medical Research Development

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Reference62 articles.

1. Bahrami AA, Ghaemi A, Tabarraei A, Sajadian A, Gorji A, Soleimanjahi H. DNA vaccine encoding HPV-16 E7 with mutation in LYCYE pRb-binding motif induces potent anti-tumor responses in mice. J Virol Methods. 2014;206:12–8.

2. Fotouhi F, Shaffifar M, Farahmand B, Shirian S, Saeidi M, Tabarraei A, Gorji A, Ghaemi A. Adjuvant use of the NKT cell agonist alpha-galactosylceramide leads to enhancement of M2-based DNA vaccine immunogenicity and protective immunity against influenza A virus. Adv Virol. 2017;162:1251–60.

3. Baghban Rahimi S, Mohebbi A, Vakilzadeh G, Biglari P, Razeghi Jahromi S, Mohebi SR, Shirian S, Gorji A, Ghaemi A. Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells. Adv Virol. 2018;163:587–97.

4. Ghaemi A, Soleimanjahi H, Bamdad T, Soudi S, Arefeian E, Hashemi SM, Ebtekar M. Induction of humoral and cellular immunity against latent HSV-1 infections by DNA immunization in BALB/c mice. Comp Immunol Microbiol Infect Dis. 2007;30:197–210.

5. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110:2080–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3