Peptide aptamer-based time-resolved fluoroimmunoassay for CHIKV diagnosis

Author:

Liu Tonggong,Gao Cheng,Wang Jingzhe,Song Jianning,Chen Xi,Chen Hongfang,Zhao Xiaona,Tang Huanwen,Gu Dayong

Abstract

Abstract Background Chikungunya virus (CHIKV) and Dengue virus (DENV) have similar clinical symptoms, which often induce misdiagnoses. Therefore, an antigen detection diagnostic system that can clearly identify these two viruses is desirable. Methods In this study, we developed a novel peptide with high affinity and specificity to CHIKV, and further constructed peptide aptamer-based TRFIA assay to efficiently detect CHIKV. Peptide aptamer B2 (ITPQSSTTEAEL) and B3 (DTQGSNWI) were obtained through computer-aided design and selected as CHIKV-specific peptide aptamers based on their high binding affinity, strong hydrogen bonding, and RMSD of molecular docking. Then, a sandwich-Time-Resolved Fluoroimmunoassay (TRFIA) was successfully constructed for the detection of the interaction between peptide aptamers and viruses. Results When using B2 as the detection element, highly specific detection of CHIKV E2 was achieved with detection limits of 8.5 ng/ml in PBS solution. Variation coefficient between inter-assay showed the disturbances received from the detection of clinical fluid specimens (including serum and urine), were also within acceptable limits. The detection limits for 10-fold dilution serum and urine were 57.8 ng/mL and 147.3 ng/mL, respectively. The fluorescent signal intensity exhibited a good linear correlation with E2 protein concentration in the range of 0-1000 ng/mL, indicating the potential for quantitative detection of E2 protein. Conclusions These results demonstrate that the construction of peptide aptamers with high affinity and specificity provides an excellent method for rapid diagnostic element screening, and the developed peptide aptamer B2 contributed to better detection of CHIKV viral particles compared to traditional antibodies.

Funder

Shenzhen Science and Technology Foundation

The National Natural Science Foundation of China

Guangdong Science and Technology Foundation

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3