Swine influenza virus triggers ferroptosis in A549 cells to enhance virus replication

Author:

Cheng Jinghua,Tao Jie,Li Benqiang,Shi Ying,Liu Huili

Abstract

Abstract Background Recently, Influenza A virus (IAV) has been shown to activate several programmed cell death pathways that play essential roles in host defense. Indeed, cell death caused by viral infection may be mediated by a mixed pattern of cell death instead of a certain single mode. Ferroptosis is a novel form of regulated cell death (RCD) that is mainly mediated by iron-dependent lipid peroxidation. Based on the proteomic data, we wondered whether IAV causes ferroptosis in host cells. Method In this study, a quantitative proteomics approach based on an iTRAQ combined with LC–MS/MS was used to profile proteins expressed in A549 cells infected with H1N1 swine influenza virus (SIV). Meanwhile, we measured the intracellular iron content, reactive oxygen species (ROS) release and lipid peroxidation in response to SIV infection. Finally, a drug experiment was conducted to investigate the effects of ferroptosis on modulating SIV survival. Results The bioinformatics analysis revealed several proteins closely relevant to iron homeostasis and transport, and the ferroptosis signaling pathway are highly enriched in response to SIV infection. In our experiment, aberrant expression of iron-binding proteins disrupted labile iron uptake and storage after SIV infection. Meanwhile, SIV infection inhibited system the Xc/GPX4 axis resulting in GSH depletion and the accumulation of lipid peroxidation products. Notably, cell death caused by SIV as a result of iron-dependent lipid peroxidation can be partially rescued by ferroptosis inhibitor. Additionally, blockade of the ferroptotic pathway by ferrostatin-1 (Fer-1) treatment decreased viral titers and inflammatory response. Conclusions This study revealed a new mode of cell death induced by IAV infection, and our findings might improve the understanding of the underlying mechanism involved in the interaction of virus and host cells.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3