Interactions between DC-SIGN and the envelope protein from Dengue and Zika viruses: a structural perspective based on molecular dynamics and MM/GBSA analyses

Author:

Menechino Bruno Stein Barbosa,Kato Rodrigo Bentes,Franz Helena Cristina Ferreira,da Silva Pedro Eduardo Almeida,Corat Marcus,de Lima Neto Daniel Ferreira

Abstract

AbstractZika virus (ZIKV) and dengue virus (DENV) share a lot of similarities being both phylogenetically closely related, share the same insect vector passage for reaching the host, affinity for the same carbohydrate receptor domains (CRDs), indicating feasible competition between them on the natural field. Here, we prospected interactions of both envelope proteins with a DC-SIGN, a transmembrane c-type lectine receptor with the most implicated CRD with the Flavivirus infection presents on dendritic cells involved in viruses replication processes into the host, and among rares CRD receptors susceptible to interacting with a broad of subtypes of DENV. Protein–protein docking procedures produced structures for molecular dynamics experiments, suggesting the most energetically favorable complex. The difference found in the deltaG results prompted the experimentation with molecular dynamics. To investigate further specific residues involved with such interactions we produced a decomposition analysis using molecular dynamics of the docked proteins evaluated afterward with the Generalized Born Surface Area method. Solvent-accessible surface area (SASA) analysis for both showed very similar but with a slight reduction for ZIKV_E, which agreed with residues SASA analysis highlighting regions more exposed in the ZIVK protein than in DENV. Despite residues PHE313 is reponsible for most of the interactions with the envelope of these arboviruses, ZIKV interacted with this residue in DC-SIGN with lower energies and using more interactions with not expexted residues GLU241 and ARG386. Taken together these results suggest better competitive interaction of ZIKV with the DC-SIGN receptor, particularly in the CRD portion.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

FIOTEC

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3