A solution to achieve sequencing from SARS-CoV-2 specimens with low viral loads: concatenation of reads from independent reactions

Author:

Cerro-Monje Alba,Buenestado-Serrano SergioORCID,Palomino-Cabrera Rosalía,Molero-Salinas Andrea,Herranz Marta,Alonso Roberto,Catalán Pilar,Muñoz Patricia,García de Viedma Darío,Pérez-Lago Laura,

Abstract

Abstract Background During the pandemic, whole genome sequencing was critical to characterize SARS-CoV-2 for surveillance, clinical and therapeutical purposes. However, low viral loads in specimens often led to suboptimal sequencing, making lineage assignment and phylogenetic analysis difficult. We propose an alternative approach to sequencing these specimens that involves sequencing in triplicate and concatenation of the reads obtained using bioinformatics. This proposal is based on the hypothesis that the uncovered regions in each replicate differ and that concatenation would compensate for these gaps and recover a larger percentage of the sequenced genome. Results Whole genome sequencing was performed in triplicate on 30 samples with Ct > 32 and the benefit of replicate read concatenation was assessed. After concatenation: i) 28% of samples reached the standard quality coverage threshold (> 90% genome covered > 30x); ii) 39% of samples did not reach the coverage quality thresholds but coverage improved by more than 40%; and iii) SARS-CoV-2 lineage assignment was possible in 68.7% of samples where it had been impaired. Conclusions Concatenation of reads from replicate sequencing reactions provides a simple way to access hidden information in the large proportion of SARS-CoV-2-positive specimens eliminated from analysis in standard sequencing schemes. This approach will enhance our potential to rule out involvement in outbreaks, to characterize reinfections and to identify lineages of concern for surveillance or therapeutical purposes.

Funder

Instituto de Salud Carlos III

European Regional Development Fund

Instituto de Investigación Sanitaria Gregorio Marañón

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3