Author:
Khaing Yu Yu,Kobayashi Yudai,Takeshita Minoru
Abstract
Abstract
Background
In Raphanus sativus (Japanese radish), strain D8 of cucumber mosaic virus (CMV-D8) establishes a systemic infection and induces mild mosaic on upper, non-inoculated leaves, whereas strain Y of CMV (CMV-Y) causes only a local infection in the inoculated leaves. Here, we further analyzed the specific viral factor(s) of CMV-D8 that is (are) indispensable for systemic infection in Japanese radish.
Methods
To identify which genomic RNA(s) is (are) involved in systemic infection in radish, we carried out a pseudorecombination analysis between CMV-D8 and CMV-Y. With recombination analyses between CMV-D8 and CMV-Y using mutant/recombinant RNA2s, chimeric and point-mutated RNA3s, we identified viral factors that are indispensable for systemic infection.
Results
Viral RNA2 and RNA3 of CMV-D8 facilitated efficient virus spread into the upper, non-inoculated plant tissues of radish (cv. Tokinashi), but not those of CMV-Y. Recombinant RNA2s demonstrated that the 2b protein (2b) and the C-terminus of the 2a protein (2a) of CMV-D8 have a crucial role in systemic infection. In addition, we used chimeric and point-mutated RNA3s to that Pro17 and Pro129 in the coat protein (CP) of CMV-D8 are involved in efficient systemic infection and that Ser51 in the 3a protein (3a) of CMV-D8 has positive effects on systemic spread. The results suggested that these viral factors facilitate systemic infection of CMV-D8 in Japanese radish.
Conclusion
The C-terminal region of 2a, the entire region of 2b, and supplementary function of either Ser51 in 3a or Pro17/Pro 129 in CP confer systemic infectivity on CMV-D8 in radish. These results further elucidate the complex interaction of viral proteins of CMV to complete systemic infection as a host-specific manner.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference44 articles.
1. Adhab AA, Alani RA. Characterization of an isolate of Cucumber mosaic cucumovirus from radish (Raphanus sativus) in Iraq. Plant Pathol J. 2013;12(2):115–9.
2. Adhab MA, Alani RA. Amaryllis and Shrimp plant are secondary hosts of Cucumber mosaic cucumovirus (CMV) in Iraq. Agri Biol J North Am. 2011;2:872–5.
3. Carrington JC, Kasschau KD, Mahajan SK, Schaad MC. Cell-to-cell and long-distance transport of viruses in plants. Plant Cell. 1996;8:1669–81.
4. Choi SK, Palukaitis P, Min BE, Lee MY, Choi JK, Ryu KH. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash. J Gen Virol. 2005;86:1213–22.
5. Cillo F, Mascia T, Pasciuto MM, Gallitelli D. Differential effects of mild and severe cucumber mosaic virus strains in the perturbation of microRNA-regulated gene expression in tomato map to the 3′sequence of RNA 2. Am Phytopathol Soc. 2009;22(10):1239–49.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献