MRF: a tool to overcome the barrier of inconsistent genome annotations and perform comparative genomics studies for the largest animal DNA virus
-
Published:2023-04-18
Issue:1
Volume:20
Page:
-
ISSN:1743-422X
-
Container-title:Virology Journal
-
language:en
-
Short-container-title:Virol J
Author:
Krishnan Karthic,Katneni Vinaya Kumar,Prabhudas Sudheesh K.,Kaikkolante Nimisha,Jangam Ashok Kumar,Katneni Upendra Kumar,Hauton Chris,Peruzza Luca,Mudagandur Shashi Shekhar,Koyadan Vijayan K.,Poochirian Jithendran Karingalakkandy,Jena Joykrushna
Abstract
Abstract
Background
The genome of the largest known animal virus, the white spot syndrome virus (WSSV) responsible for huge economic losses and loss of employment in aquaculture, suffers from inconsistent annotation nomenclature. Novel genome sequence, circular genome and variable genome length led to nomenclature inconsistencies. Since vast knowledge has already accumulated in the past two decades with inconsistent nomenclature, the insights gained on a genome could not be easily extendable to other genomes. Therefore, the present study aims to perform comparative genomics studies in WSSV on uniform nomenclature.
Methods
We have combined the standard mummer tool with custom scripts to develop missing regions finder (MRF) that documents the missing genome regions and coding sequences in virus genomes in comparison to a reference genome and in its annotation nomenclature. The procedure was implemented as web tool and in command-line interface. Using MRF, we have documented the missing coding sequences in WSSV and explored their role in virulence through application of phylogenomics, machine learning models and homologous genes.
Results
We have tabulated and depicted the missing genome regions, missing coding sequences and deletion hotspots in WSSV on a common annotation nomenclature and attempted to link them to virus virulence. It was observed that the ubiquitination, transcription regulation and nucleotide metabolism might be essentially required for WSSV pathogenesis; and the structural proteins, VP19, VP26 and VP28 are essential for virus assembly. Few minor structural proteins in WSSV would act as envelope glycoproteins. We have also demonstrated the advantage of MRF in providing detailed graphic/tabular output in less time and also in handling of low-complexity, repeat-rich and highly similar regions of the genomes using other virus cases.
Conclusions
Pathogenic virus research benefits from tools that could directly indicate the missing genomic regions and coding sequences between isolates/strains. In virus research, the analyses performed in this study provides an advancement to find the differences between genomes and to quickly identify the important coding sequences/genomes that require early attention from researchers. To conclude, the approach implemented in MRF complements similarity-based tools in comparative genomics involving large, highly-similar, length-varying and/or inconsistently annotated viral genomes.
Funder
Indian Council of Agricultural Research
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference66 articles.
1. Pradeep B, Rai P, Mohan SA, Shekhar MS, Karunasagar I. Biology, host range, pathogenesis and diagnosis of white spot syndrome virus. Indian J Virol. 2012;23(2):161–74.
2. FAO. Globefish highlights—a quarterly update on world seafood markets. Food Agric Organ U N. 2020;2:37–42.
3. Briggs M, Funge-Smith S, Subasinghe RP, Phillips M. Introductions and movement of two penaeid shrimp species in Asia and the Pacific. FAO Fisheries Technical Paper 476. Rome: Food & Agriculture Org.; 2005.
4. Flegel TW, Lightner DV, Lo CF, Owens L. Shrimp disease control: past, present and future. In: Bondad-Reantaso MG, Mohan CV, Crumlish M, Subasinghe RP, editors. Diseases in Asian aquaculture VI. Fish heal section. Philippines: Asian Fisheries Society; 2008. p. 355–78.
5. Lightner DV, Redman RM, Pantoja CR, Tang KFJ, Noble BL, Schofield P, et al. Historic emergence, impact and current status of shrimp pathogens in the Americas. J Invertebr Pathol. 2012;110(2):174–83.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献