Abstract
Abstract
Background
Instantaneous wave-free ratio (iwFR) is a well-validated method for functional evaluation of intermediate coronary lesions. A recently developed Murray law-based QFR (µQFR) allows wire-free FFR estimation using a high-quality single angiographic projection. We aim to determine the diagnostic accuracy of µQFR as compared to wire-based iwFR for physiological assessment of coronary lesions in a sample of Egyptian patients.
Results
Over a one-year period, patients who previously underwent iwFR assessment of an intermediate coronary stenosis (40–90%) were retrospectively included. μQFR analysis was then performed offline using a dedicated artificial intelligence (AI)-aided computation software. All the measurements were performed blinded to iwFR results, and the agreement between iwFR and μQFR values was tested. Forty-nine patients (mean age 57.9 ± 9 years, 72.9% males) were included. Mean value of iwFR and μQFR was 0.90 ± 0.075 and 0.79 ± 0.129, respectively. There was a significant moderate positive linear correlation between μQFR and iwFR (r = 0.47, p = 0.001; 95% CI 0.22–0.68) with moderate-to-substantial agreement between the two methods (Kappa 0.6). In assessing the diagnostic accuracy of μQFR, the receiver operating characteristic (ROC) curve yielded an area under the curve (AUC) of 0.84 (95% CI 0.717–0.962) for predicting functionally significant lesions defined as iwFR < 0.89. The sensitivity and specificity of μQFR < 0.8 for detecting physiological significance of coronary lesions were 89% and 74% with positive and negative predictive values of 70 and 91%, respectively.
Conclusion
µQFR has good diagnostic accuracy for predicting functionally significant coronary lesions with moderate correlation and agreement with the gold standard iwFR. Angiography-derived µQFR could be a promising tool for improving the utilization of physiology-guided revascularization.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Tonino PAL, De Bruyne B, Pijls NHJ et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224
2. Zimmermann FM, Ferrara A, Johnson NP et al (2015) Deferral versus performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J 36(45):3182–3188
3. Lawton JS, Tamis-Holland JE, Bangalore S et al (2022) 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 145(3):e4–e17
4. Härle T, Zeymer U, Hochadel M et al (2017) Real-world use of fractional flow reserve in Germany: results of the prospective ALKK coronary angiography and PCI registry. Clin Res Cardiol 106(2):140–150
5. Tebaldi M, Biscaglia S, Fineschi M et al (2018) Evolving Routine Standards in Invasive Hemodynamic Assessment of Coronary Stenosis. JACC Cardiovasc Interv 11(15):1482–1491